File size: 17,067 Bytes
c44440b
 
 
 
 
 
 
 
418dd18
c44440b
418dd18
c44440b
 
 
 
 
 
 
 
418dd18
e31fdfd
c44440b
 
 
 
 
 
 
 
 
60d4fa0
c44440b
 
 
bd59338
 
c44440b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b8de4
c44440b
 
 
 
 
e0b8de4
c44440b
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b8de4
c44440b
 
 
 
 
e0b8de4
c44440b
 
 
 
 
 
 
 
 
 
 
 
e0b8de4
c44440b
 
 
 
 
 
 
 
 
e0b8de4
 
c44440b
 
 
 
 
 
 
 
 
 
 
 
e0b8de4
c44440b
 
 
e0b8de4
c44440b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695211a
3a747d5
695211a
 
5c181ca
 
 
 
 
dc88b1c
5c181ca
 
3a747d5
c44440b
 
 
 
 
5092f76
 
 
 
 
 
 
c44440b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
pipeline_tag: text-generation
license: apache-2.0
language:
- zh
- en
---

# Model Card for MediaTek Research Breeze-7B-Instruct-v1_0

MediaTek Research Breeze-7B (hereinafter referred to as Breeze-7B) is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.

[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) is the base model for the Breeze-7B series. 
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.

[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.

The current release version of Breeze-7B is v1.0, which has undergone a more refined training process compared to Breeze-7B-v0_1, resulting in significantly improved performance in both English and Traditional Chinese.

For details of this model please read our [paper](https://arxiv.org/abs/2403.02712).

Practicality-wise:
- Breeze-7B-Base expands the original vocabulary with an additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, and everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.


Performance-wise:
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English when compared to similar-sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen(1.5)-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]


*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, [Yi-Chang Chen 陳宜昌](https://ycc.idv.tw/about-me), and the supervisor Da-Shan Shiu 許大山.*

## Demo

<a href="https://huggingface.co/spaces/MediaTek-Research/Demo-MR-Breeze-7B" style="color:red;font-weight:bold;">Try Demo Here 👩‍💻🧑🏻‍💻</a>


## Features

- Breeze-7B-Base-v1_0
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
  - 8k-token context length
- Breeze-7B-Instruct-v1_0
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese 
  - 8k-token context length
  - Multi-turn dialogue (without special handling for harmfulness)


## Model Details

- Breeze-7B-Base-v1_0
  - Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-v1_0
  - Finetuned from: [MediaTek-Research/Breeze-7B-Base-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)

## Base Model Performance

Here we compare Breeze-7B-Base-v1_0 with other open-source base language models of similar parameter size that are widely recognized for their good performance in Chinese.
**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. All choice problems adapt the selection by the log-likelihood.


| Models                                                                                    | #Parameters | ↑ TMMLU+ (ACC) | DRCD (EM)   | Table (ACC) | MMLU (ACC) |
|----------------------------------------------                                             |--------|--------------|-------------|-------------|------------|
|                                                                                           |        |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
|                                                                                           |        | 5 shot       | 3 shot      | 5 shot      | 5 shot      |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B)                                               | 6B     |   49.63      | 76.61       |   34.72     | 65.35       |
| [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B)                                      | 7B     |   46.59      | 74.41       |   30.56     | 63.07       |
| [**Breeze-7B-Base-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0)   | 7B     |   42.67      | 80.61       |   31.99     | 61.24       |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)                       | 7B     |   36.93      | 79.27       |   27.78     | 64.89       |

## Instruction-tuned Model Performance

Here we compare Breeze-7B-Instruct-v1_0 with other open-source instruction-tuned language models of similar parameter size that are widely recognized for their good performance in Chinese.
Also, we listed the benchmark scores of GPT-3.5 Turbo (1106), which represents one of the most widely used high-quality cloud language model API services, for reference.
**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 **MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. All choice problems adapt the selection by the log-likelihood.
 We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.


| Models                                                                                             | #Parameters | ↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | Table (ACC) | MT-Bench (Score) | MMLU (ACC)  | 
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|-------------|------------------|-------------|
|                                                                                                         |        |TC, Chat            |TC, Knowledge |TC, Reasoning|EN, Chat          |EN, Knowledge|
|                                                                                                         |        |0 shot              | 0 shot       | 0 shot      |0 shot            |  0 shot     | 
| [GPT-3.5-Turbo](https://openai.com)                                                                     |        |7.1                 | 43.56        | 45.14       |7.9               |  67.09      |    
| [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)                                          | 7B     |6.4                 | 45.65        | 34.72       |7.6               |  61.85      |    
| [**Breeze-7B-Instruct-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0)         | 7B     |6.0                 | 42.67        | 39.58       |7.4               |  61.73     |    
| [Mistral-7B-v0.2-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)                   | 7B     |5.6                 | 34.95        | 33.33       |7.6               |    59.97    |                                                  
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)                                                   | 6B     |5.0                 | 44.79        | 25.69       |6.0               |    59.45    |    
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat)                  | 13B    |5.0                 | 29.47        | 23.61       |N/A*                |    50.50    |     
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat)                    | 7B     |4.2                 | 28.08        | 31.25       |N/A*               |    42.72    |    

\* Taiwan-LLM models respond to multi-turn questions (English) in Traditional Chinese.    


| Details on MT-Bench-tw (0 shot):<br/>Models         | STEM    |Extraction|Reasoning| Math   | Coding  | Roleplay| Writing |Humanities|       AVG    | 
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|  ---------   | 
| GPT-3.5-Turbo                                       |  7.8    |  6.1    |   5.1   |   6.4   |  6.2    |   8.7   |   7.4   |   9.3    |        7.1   |
| Qwen1.5-7B-Chat                                     |  9      |  5.6    |   4.7   |   2.8   |  3.7    |   8.0   |   8.0   |   9.4    |        6.4   |
| **Breeze-7B-Instruct-v1_0**                         |  7.8    |  5.2    |   4.2   |   4.2   |  4.1    |   7.6   |   5.9   |   9.1    |        6.0   |
| Mistral-7B-v0.2-Instruct                            |  6.9    |  4.6    |   4.3   |   3.3   |  4.4    |   7.2   |   6.2   |   7.8    |        5.6   |                                          
| Yi-6B-Chat                                          |  7.3    |  2.7    |   3.1   |   3.3   |  2.3    |   7.2   |   5.2   |   8.8    |        5.0   |
| Taiwan-LLM-13B-v2.0-chat                            |  6.1    |  3.4    |   4.1   |   2.3   |  3.1    |   7.4   |   6.6   |   6.8    |        5.0   |
| Taiwan-LLM-7B-v2.1-chat                             |  5.2    |  2.6    |   2.3   |   1.2   |  3.4    |   6.6   |   5.7   |   6.8    |        4.2   |



| Details on TMMLU+ (0 shot):<br/>Model               | STEM         | Social Science | Humanities | Other      |   AVG   |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
| GPT-3.5-Turbo                                       | 41.58        | 48.52          | 40.96      | 43.18      | 43.56   |
| Qwen1.5-7B-Chat                                     | 41.48        | 51.66          | 44.05      | 45.40      | 45.65   |
| **Breeze-7B-Instruct-v1_0**                         | 36.46        | 48.38          | 45.11      | 40.75      | 42.67   |
| Mistral-7B-v0.2-Instruct                            | 32.79        | 38.05          | 34.89      | 34.04      | 34.94   |
| Yi-6B-Chat                                          | 37.80        | 51.74          | 45.36      | 44.25      | 44.79   |
| Taiwan-LLM-13B-v2.0-chat                            | 27.74        | 33.69          | 27.03      | 29.43      | 29.47   |
| Taiwan-LLM-7B-v2.1-chat                             | 25.58        | 31.76          | 27.36      | 27.61      | 28.08   |



## Inference Performance
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).

| Models                                                             | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|--------------------------------------------------------------------|-------------------|--------------------------|
| Qwen1.5-7B-Chat                                                    |  9.35             |    38.9k                  |
| Yi-6B-Chat                                                         |   10.62           |   5.2k                |
| **Breeze-7B-Instruct-v1_0**                                        |  10.74            |    11.1k                 |
| Mistral-7B-Instruct-v0.2                                           |  20.48           |    5.1k                 |
| Taiwan-LLM-7B-v2.1-chat                                            |   26.26          |    2.2k                  |
<!---| Taiwan-LLM-13B-v2.0-chat                                           |   36.80          |    2.2k                  |--->


<!---## Long-context Performance
TBD--->

## Use in Transformers

First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Instruction Model
model = AutoModelForCausalLM.from_pretrained(
    "MediaTek-Research/Breeze-7B-Instruct-v1_0",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    # attn_implementation="flash_attention_2" # optional
)

# Basemodel
model = AutoModelForCausalLM.from_pretrained(
    "MediaTek-Research/Breeze-7B-Base-v1_0",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    # attn_implementation="flash_attention_2" # optional
)
```

**For Breeze-7B-Instruct**, the structure of the query is 
```txt
<s>SYS_PROMPT  [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST] 
```
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user.

The suggested default `SYS_PROMPT` is 
```txt
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.
```

We also integrate `chat_template` into [tokenizer_config.json](tokenizer_config.json), so you can `apply_chat_template` to get the prompt.

```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
>>> chat = [
...   {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
...   {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
...   {"role": "user", "content": "太棒了!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.  [INST] 你好,請問你可以完成什麼任務? [/INST] 你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。 [INST] 太棒了! [/INST] "
# Tokenized results
# ['▁', '你好', ',', '請問', '你', '可以', '完成', '什麼', '任務', '?']
# ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
# ['▁', '太', '棒', '了', '!']
```

Text generation can be done by `generate` and `apply_chat_template` functions:
```python
>>> outputs = model.generate(tokenizer.apply_chat_template(chat, return_tensors="pt"),
>>>                          # adjust below parameters if necessary 
>>>                          max_new_tokens=128,
>>>                          top_p=0.01,
>>>                          top_k=85,
>>>                          repetition_penalty=1.1,
>>>                          temperature=0.01)
>>>                          
>>> print(tokenizer.decode(outputs[0]))
```

## Citation

```
@article{MediaTek-Research2024breeze7b,
      title={Breeze-7B Technical Report}, 
      author={Chan-Jan Hsu and Chang-Le Liu and Feng-Ting Liao and Po-Chun Hsu and Yi-Chang Chen and Da-Shan Shiu},
      year={2024},
      eprint={2403.02712},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```