File size: 12,215 Bytes
4aef754
5ac1cdf
 
 
4aef754
 
 
 
 
 
 
 
 
 
 
5ac1cdf
 
 
4aef754
 
 
 
 
 
5ac1cdf
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
5ac1cdf
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
9e4bf00
4aef754
 
 
 
 
62ce60c
4aef754
 
 
2fc0f91
4aef754
62ce60c
4aef754
2fc0f91
62ce60c
2fc0f91
b89671d
 
 
 
 
 
 
 
 
 
 
2fc0f91
 
 
 
 
 
 
 
 
 
 
 
 
 
4aef754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ce60c
4aef754
 
 
 
 
 
 
62ce60c
4aef754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac1cdf
9e4bf00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
---
language:
- en
license: llama3
library_name: transformers
tags:
- axolotl
- finetune
- dpo
- facebook
- meta
- pytorch
- llama
- llama-3
- chatml
base_model: meta-llama/Meta-Llama-3-70B-Instruct
datasets:
- argilla/ultrafeedback-binarized-preferences
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-2.4-llama3-70b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 72.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.03
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.5
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 63.26
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.58
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 87.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 50.27
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 48.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 22.66
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.97
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.1
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.4-llama3-70b
      name: Open LLM Leaderboard
---

<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# MaziyarPanahi/calme-2.4-llama3-70b

This model is a fine-tune (DPO) of `meta-llama/Meta-Llama-3-70B-Instruct` model.

# ⚡ Quantized GGUF

All GGUF models are available here: [MaziyarPanahi/calme-2.4-llama3-70b-GGUF](https://huggingface.co/MaziyarPanahi/calme-2.4-llama3-70b-GGUF)

# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-2.4-llama3-70b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |32.18|
|IFEval (0-Shot)    |50.27|
|BBH (3-Shot)       |48.40|
|MATH Lvl 5 (4-Shot)|22.66|
|GPQA (0-shot)      |11.97|
|MuSR (0-shot)      |13.10|
|MMLU-PRO (5-shot)  |46.71|


|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |78.89|
|AI2 Reasoning Challenge (25-Shot)|72.61|
|HellaSwag (10-Shot)              |86.03|
|MMLU (5-Shot)                    |80.50|
|TruthfulQA (0-shot)              |63.26|
|Winogrande (5-shot)              |83.58|
|GSM8k (5-shot)                   |87.34|

**Top 10 models on the Leaderboard**
<img src="./llama-3-70b-top-10.png" alt="Llama-3-70B finet-tuned models" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Prompt Template

This model uses `ChatML` prompt template:

```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````

# How to use

You can use this model by using `MaziyarPanahi/calme-2.4-llama3-70b` as the model name in Hugging Face's
transformers library.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch

model_id = "MaziyarPanahi/calme-2.4-llama3-70b"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
    # attn_implementation="flash_attention_2"
)

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True
)

streamer = TextStreamer(tokenizer)

pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    model_kwargs={"torch_dtype": torch.bfloat16},
    streamer=streamer
)

# Then you can use the pipeline to generate text.

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|im_end|>"),
    tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too
]

outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
```

## Sample Response

```
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
describe about pros and cons of docker system.<|im_end|>
<|im_start|>assistant
```

```
Here are the pros and cons of the Docker system:

**Pros:**

1. **Lightweight**: Docker containers are lightweight and use fewer resources compared to traditional virtual machines.
2. **Isolation**: Docker provides a high level of isolation between containers, ensuring that each application runs independently without interfering with others.
3. **Portability**: Docker containers are highly portable and can run on any system that supports Docker, without requiring specific dependencies or configurations.
4. **Efficient Use of Resources**: Docker containers can share the same kernel and use fewer resources, making them more efficient than traditional virtual machines.
5. **Fast Deployment**: Docker containers can be spun up quickly, making it ideal for rapid deployment and scaling of applications.
6. **Easy Maintenance**: Docker provides a simple way to manage and update applications, with features like rolling updates and rollbacks.
7. **Security**: Docker provides a secure environment for applications, with features like network isolation and encryption.
8. **Large Ecosystem**: Docker has a large and active ecosystem, with a wide range of tools and plugins available for various tasks.
9. **Version Control**: Docker provides an easy way to manage different versions of an application, with features like version tagging and rollbacks.
10. **Cost-Effective**: Docker can help reduce costs by minimizing the need for virtual machines and reducing the overhead of resource allocation.

**Cons:**

1. **Steep Learning Curve**: Docker has a complex architecture and requires a good understanding of containerization, networking, and storage.
2. **Overhead**: While Docker containers are lightweight, they still require some overhead in terms of resources and management.
3. **Security Risks**: If not properly configured, Docker containers can introduce security risks, such as unauthorized access to the host system.
4. **Limited Support for GUI Applications**: Docker is primarily designed for running command-line applications, and running GUI applications can be challenging.
5. **Networking Complexity**: Docker's networking model can be complex, especially in large-scale deployments.
6. **Storage Complexity**: Docker's storage model can be complex, especially when dealing with persistent data.
7. **Limited Support for Legacy Applications**: Docker is designed for modern, cloud-native applications, and may not be suitable for legacy applications that rely on older technologies.
8. **Dependence on Docker Hub**: Docker relies heavily on Docker Hub, which can be a single point of failure if the hub is down or experiencing issues.
9. **Orchestration Complexity**: Docker provides a built-in orchestration tool, Docker Swarm, but it can be complex to set up and manage.
10. **Vendor Lock-in**: Docker is a proprietary technology, and while it has a large ecosystem, it can be difficult to switch to alternative containerization platforms.

Overall, Docker provides a powerful and flexible way to deploy and manage applications, but it requires careful planning, configuration, and management to ensure optimal performance and security.
```