Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
sharegpt
axolotl
conversational
text-generation-inference
File size: 1,510 Bytes
32dec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
language:
- fr
- it
- de
- es
- en
tags:
- moe
- mixtral
- sharegpt
- axolotl
library_name: transformers
base_model: v2ray/Mixtral-8x22B-v0.2
inference: false
model_creator: MaziyarPanahi
model_name: Goku-8x22B-v0.2
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
datasets:
- microsoft/orca-math-word-problems-200k
- teknium/OpenHermes-2.5
---

<img src="./Goku-8x22b-v0.1.webp" alt="Goku 8x22B v0.1 Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# Goku-8x22B-v0.2 (Goku 141b-A35b)

A fine-tuned version of [v2ray/Mixtral-8x22B-v0.2](https://huggingface.co/v2ray/Mixtral-8x22B-v0.2) model on the following datasets:

- teknium/OpenHermes-2.5
- WizardLM/WizardLM_evol_instruct_V2_196k
- microsoft/orca-math-word-problems-200k

This model has a total of 141b parameters with 35b only active. The major difference in this version is that the model was trained on more datasets and with an `8192 sequence length`. This results in the model being able to generate longer and more coherent responses. 


## How to use it


**Use a pipeline as a high-level helper:**
```python
from transformers import pipeline

pipe = pipeline("text-generation", model="MaziyarPanahi/Goku-8x22B-v0.2")
```

**Load model directly:**
```python

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Goku-8x22B-v0.2")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Goku-8x22B-v0.2")
```