MayaGalvez
commited on
Commit
•
c826ea7
1
Parent(s):
396748f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bert-base-multilingual-cased-finetuned-pos
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# bert-base-multilingual-cased-finetuned-pos
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1736
|
23 |
+
- Precision: 0.9499
|
24 |
+
- Recall: 0.9504
|
25 |
+
- F1: 0.9501
|
26 |
+
- Accuracy: 0.9551
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 5
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.7663 | 0.27 | 200 | 0.2047 | 0.9318 | 0.9312 | 0.9315 | 0.9388 |
|
58 |
+
| 0.5539 | 0.53 | 400 | 0.1815 | 0.9381 | 0.9404 | 0.9392 | 0.9460 |
|
59 |
+
| 0.5222 | 0.8 | 600 | 0.1787 | 0.9400 | 0.9424 | 0.9412 | 0.9468 |
|
60 |
+
| 0.5084 | 1.07 | 800 | 0.1591 | 0.9470 | 0.9463 | 0.9467 | 0.9519 |
|
61 |
+
| 0.4703 | 1.33 | 1000 | 0.1622 | 0.9456 | 0.9458 | 0.9457 | 0.9510 |
|
62 |
+
| 0.5005 | 1.6 | 1200 | 0.1666 | 0.9470 | 0.9464 | 0.9467 | 0.9519 |
|
63 |
+
| 0.4677 | 1.87 | 1400 | 0.1583 | 0.9483 | 0.9483 | 0.9483 | 0.9532 |
|
64 |
+
| 0.4704 | 2.13 | 1600 | 0.1635 | 0.9472 | 0.9475 | 0.9473 | 0.9528 |
|
65 |
+
| 0.4639 | 2.4 | 1800 | 0.1569 | 0.9475 | 0.9488 | 0.9482 | 0.9536 |
|
66 |
+
| 0.4627 | 2.67 | 2000 | 0.1605 | 0.9474 | 0.9478 | 0.9476 | 0.9527 |
|
67 |
+
| 0.4608 | 2.93 | 2200 | 0.1535 | 0.9485 | 0.9495 | 0.9490 | 0.9538 |
|
68 |
+
| 0.4306 | 3.2 | 2400 | 0.1646 | 0.9489 | 0.9487 | 0.9488 | 0.9536 |
|
69 |
+
| 0.4583 | 3.47 | 2600 | 0.1642 | 0.9488 | 0.9495 | 0.9491 | 0.9539 |
|
70 |
+
| 0.453 | 3.73 | 2800 | 0.1646 | 0.9498 | 0.9505 | 0.9501 | 0.9554 |
|
71 |
+
| 0.4347 | 4.0 | 3000 | 0.1629 | 0.9494 | 0.9504 | 0.9499 | 0.9552 |
|
72 |
+
| 0.4425 | 4.27 | 3200 | 0.1738 | 0.9495 | 0.9502 | 0.9498 | 0.9550 |
|
73 |
+
| 0.4335 | 4.53 | 3400 | 0.1733 | 0.9499 | 0.9506 | 0.9503 | 0.9550 |
|
74 |
+
| 0.4306 | 4.8 | 3600 | 0.1736 | 0.9499 | 0.9504 | 0.9501 | 0.9551 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.21.0
|
80 |
+
- Pytorch 1.12.0+cu102
|
81 |
+
- Datasets 2.4.0
|
82 |
+
- Tokenizers 0.12.1
|