File size: 1,853 Bytes
cca2d4e
 
 
32f8c56
cca2d4e
 
 
32f8c56
 
 
 
 
 
cca2d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f8c56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: InternLM2-SFT
tags:
- math
model-index:
- name: InternLM2-SFT-SCDPO
  results: []
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---

# InternLM2-SFT-SCDPO

This model is a fine-tuned version of the InternLM2-20B model using SFT and SCDPO.
It achieves the following results on the evaluation set:

- Loss: 0.2572
- Rewards/chosen: 0.7366
- Rewards/rejected: -2.9817
- Rewards/accuracies: 0.8929
- Rewards/margins: 3.7183
- Logps/rejected: -155.1884
- Logps/chosen: -92.5904
- Logits/rejected: -2.3032
- Logits/chosen: -2.4880

## Model description

This is a model fine-tuned for mathematical problem-solving.

## Intended uses & limitations

The model is intended for solving math problems.

## Training and evaluation data

|                                | gsm8k    | math     | ape      | cmath    | mgsm_zh  |
| ------------------------------ | -------- | -------- | -------- | -------- | -------- |
| InternLM2-SFT                  | 86.4     | 55.8     | 77.1     | 88.4     | 74.8     |
| InternLM2-SFT-DPO              | 87       | 57.6     | 78.7     | 89.9     | 76       |
| InternLM2-SFT-DPO (data-equal) | 88.2     | 57.5     | 78.8     | 89.3     | 76       |
| InternLM2-SFT-SCDPO            | **88.5** | **58.1** | **79.3** | **90.3** | **80.4** |



## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2