|
import os |
|
import random |
|
import uuid |
|
from time import time |
|
from urllib import request |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import progressbar |
|
import torchaudio |
|
import numpy as np |
|
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead |
|
from tortoise.models.diffusion_decoder import DiffusionTts |
|
from tortoise.models.autoregressive import UnifiedVoice |
|
from tqdm import tqdm |
|
from tortoise.models.arch_util import TorchMelSpectrogram |
|
from tortoise.models.clvp import CLVP |
|
from tortoise.models.cvvp import CVVP |
|
from tortoise.models.hifigan_decoder import HifiganGenerator |
|
from tortoise.models.random_latent_generator import RandomLatentConverter |
|
from tortoise.models.vocoder import UnivNetGenerator |
|
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel |
|
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule |
|
from tortoise.utils.tokenizer import VoiceBpeTokenizer |
|
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment |
|
from contextlib import contextmanager |
|
from tortoise.models.stream_generator import init_stream_support |
|
from huggingface_hub import hf_hub_download |
|
pbar = None |
|
init_stream_support() |
|
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models') |
|
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR) |
|
|
|
MODELS = { |
|
'autoregressive.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/autoregressive.pth', |
|
'classifier.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/classifier.pth', |
|
'rlg_auto.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/rlg_auto.pth', |
|
'hifidecoder.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/hifidecoder.pth', |
|
} |
|
|
|
def get_model_path(model_name, models_dir=MODELS_DIR): |
|
""" |
|
Get path to given model, download it if it doesn't exist. |
|
""" |
|
if model_name not in MODELS: |
|
raise ValueError(f'Model {model_name} not found in available models.') |
|
model_path = hf_hub_download(repo_id="Manmay/tortoise-tts", filename=model_name, cache_dir=models_dir) |
|
return model_path |
|
|
|
|
|
def pad_or_truncate(t, length): |
|
""" |
|
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. |
|
""" |
|
if t.shape[-1] == length: |
|
return t |
|
elif t.shape[-1] < length: |
|
return F.pad(t, (0, length-t.shape[-1])) |
|
else: |
|
return t[..., :length] |
|
|
|
|
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): |
|
""" |
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. |
|
""" |
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', |
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), |
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k) |
|
|
|
|
|
def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'): |
|
""" |
|
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. |
|
""" |
|
gap = clip.shape[-1] - cond_length |
|
if gap < 0: |
|
clip = F.pad(clip, pad=(0, abs(gap))) |
|
elif gap > 0: |
|
rand_start = random.randint(0, gap) |
|
clip = clip[:, rand_start:rand_start + cond_length] |
|
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) |
|
return mel_clip.unsqueeze(0).to(device) |
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token, complain=True): |
|
""" |
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was |
|
trained on and what the autoregressive code generator creates (which has no padding or end). |
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with |
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE |
|
and copying out the last few codes. |
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. |
|
""" |
|
|
|
stop_token_indices = (codes == stop_token).nonzero() |
|
if len(stop_token_indices) == 0: |
|
if complain: |
|
print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " |
|
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " |
|
"try breaking up your input text.") |
|
return codes |
|
else: |
|
codes[stop_token_indices] = 83 |
|
stm = stop_token_indices.min().item() |
|
codes[stm:] = 83 |
|
if stm - 3 < codes.shape[0]: |
|
codes[-3] = 45 |
|
codes[-2] = 45 |
|
codes[-1] = 248 |
|
|
|
return codes |
|
|
|
|
|
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True): |
|
""" |
|
Uses the specified diffusion model to convert discrete codes into a spectrogram. |
|
""" |
|
with torch.no_grad(): |
|
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 |
|
output_shape = (latents.shape[0], 100, output_seq_len) |
|
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False) |
|
|
|
noise = torch.randn(output_shape, device=latents.device) * temperature |
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, |
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, |
|
progress=verbose) |
|
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] |
|
|
|
|
|
def classify_audio_clip(clip): |
|
""" |
|
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. |
|
:param clip: torch tensor containing audio waveform data (get it from load_audio) |
|
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real. |
|
""" |
|
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4, |
|
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32, |
|
dropout=0, kernel_size=5, distribute_zero_label=False) |
|
classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu'))) |
|
clip = clip.cpu().unsqueeze(0) |
|
results = F.softmax(classifier(clip), dim=-1) |
|
return results[0][0] |
|
|
|
|
|
def pick_best_batch_size_for_gpu(): |
|
""" |
|
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give |
|
you a good shot. |
|
""" |
|
if torch.cuda.is_available(): |
|
_, available = torch.cuda.mem_get_info() |
|
availableGb = available / (1024 ** 3) |
|
if availableGb > 14: |
|
return 16 |
|
elif availableGb > 10: |
|
return 8 |
|
elif availableGb > 7: |
|
return 4 |
|
if torch.backends.mps.is_available(): |
|
import psutil |
|
available = psutil.virtual_memory().total |
|
availableGb = available / (1024 ** 3) |
|
if availableGb > 14: |
|
return 16 |
|
elif availableGb > 10: |
|
return 8 |
|
elif availableGb > 7: |
|
return 4 |
|
return 1 |
|
|
|
class TextToSpeech: |
|
""" |
|
Main entry point into Tortoise. |
|
""" |
|
|
|
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, |
|
enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None, |
|
tokenizer_vocab_file=None, tokenizer_basic=False): |
|
|
|
""" |
|
Constructor |
|
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing |
|
GPU OOM errors. Larger numbers generates slightly faster. |
|
:param models_dir: Where model weights are stored. This should only be specified if you are providing your own |
|
models, otherwise use the defaults. |
|
:param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output |
|
(but are still rendered by the model). This can be used for prompt engineering. |
|
Default is true. |
|
:param device: Device to use when running the model. If omitted, the device will be automatically chosen. |
|
""" |
|
self.models_dir = models_dir |
|
self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size |
|
self.enable_redaction = enable_redaction |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu') |
|
if torch.backends.mps.is_available(): |
|
self.device = torch.device('mps') |
|
if self.enable_redaction: |
|
self.aligner = Wav2VecAlignment() |
|
|
|
self.tokenizer = VoiceBpeTokenizer( |
|
vocab_file=tokenizer_vocab_file, |
|
use_basic_cleaners=tokenizer_basic, |
|
) |
|
self.half = half |
|
if os.path.exists(f'{models_dir}/autoregressive.ptt'): |
|
|
|
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt') |
|
else: |
|
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, |
|
model_dim=1024, |
|
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, |
|
train_solo_embeddings=False).to(self.device).eval() |
|
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False) |
|
self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half) |
|
|
|
self.hifi_decoder = HifiganGenerator(in_channels=1024, out_channels = 1, resblock_type = "1", |
|
resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes = [3, 7, 11], |
|
upsample_kernel_sizes = [16, 16, 4, 4], upsample_initial_channel = 512, upsample_factors = [8, 8, 2, 2], |
|
cond_channels=1024).to(self.device).eval() |
|
hifi_model = torch.load(get_model_path('hifidecoder.pth')) |
|
self.hifi_decoder.load_state_dict(hifi_model, strict=False) |
|
|
|
self.rlg_auto = None |
|
def get_conditioning_latents(self, voice_samples, return_mels=False): |
|
""" |
|
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). |
|
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic |
|
properties. |
|
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data. |
|
""" |
|
with torch.no_grad(): |
|
voice_samples = [v.to(self.device) for v in voice_samples] |
|
|
|
auto_conds = [] |
|
if not isinstance(voice_samples, list): |
|
voice_samples = [voice_samples] |
|
for vs in voice_samples: |
|
auto_conds.append(format_conditioning(vs, device=self.device)) |
|
auto_conds = torch.stack(auto_conds, dim=1) |
|
auto_latent = self.autoregressive.get_conditioning(auto_conds) |
|
|
|
if return_mels: |
|
return auto_latent |
|
else: |
|
return auto_latent |
|
|
|
def get_random_conditioning_latents(self): |
|
|
|
if self.rlg_auto is None: |
|
self.rlg_auto = RandomLatentConverter(1024).eval() |
|
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu'))) |
|
with torch.no_grad(): |
|
return self.rlg_auto(torch.tensor([0.0])) |
|
|
|
def tts_with_preset(self, text, preset='fast', **kwargs): |
|
""" |
|
Calls TTS with one of a set of preset generation parameters. Options: |
|
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest). |
|
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference. |
|
'standard': Very good quality. This is generally about as good as you are going to get. |
|
'high_quality': Use if you want the absolute best. This is not really worth the compute, though. |
|
""" |
|
|
|
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, |
|
'top_p': .8, |
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0} |
|
|
|
presets = { |
|
'ultra_fast': {'num_autoregressive_samples': 1, 'diffusion_iterations': 10}, |
|
'fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 50}, |
|
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, |
|
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, |
|
} |
|
settings.update(presets[preset]) |
|
settings.update(kwargs) |
|
for audio_frame in self.tts(text, **settings): |
|
yield audio_frame |
|
|
|
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len): |
|
"""Handle chunk formatting in streaming mode""" |
|
wav_chunk = wav_gen[:-overlap_len] |
|
if wav_gen_prev is not None: |
|
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len] |
|
if wav_overlap is not None: |
|
|
|
if overlap_len > len(wav_chunk): |
|
|
|
if wav_gen_prev is not None: |
|
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len):] |
|
else: |
|
|
|
wav_chunk = wav_gen[-overlap_len:] |
|
return wav_chunk, wav_gen, None |
|
else: |
|
crossfade_wav = wav_chunk[:overlap_len] |
|
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device) |
|
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device) |
|
wav_chunk[:overlap_len] += crossfade_wav |
|
|
|
wav_overlap = wav_gen[-overlap_len:] |
|
wav_gen_prev = wav_gen |
|
return wav_chunk, wav_gen_prev, wav_overlap |
|
|
|
|
|
def tts_stream(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None, |
|
return_deterministic_state=False, overlap_wav_len=1024, stream_chunk_size=40, |
|
|
|
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500, |
|
|
|
cvvp_amount=.0, |
|
|
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, |
|
**hf_generate_kwargs): |
|
""" |
|
Produces an audio clip of the given text being spoken with the given reference voice. |
|
:param text: Text to be spoken. |
|
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. |
|
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which |
|
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None. |
|
Conditioning latents can be retrieved via get_conditioning_latents(). |
|
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. |
|
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. |
|
~~AUTOREGRESSIVE KNOBS~~ |
|
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP. |
|
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". |
|
:param temperature: The softmax temperature of the autoregressive model. |
|
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. |
|
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence |
|
of long silences or "uhhhhhhs", etc. |
|
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. |
|
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. |
|
~~DIFFUSION KNOBS~~ |
|
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine |
|
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, |
|
however. |
|
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for |
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output |
|
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and |
|
dramatically improves realism. |
|
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. |
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. |
|
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k |
|
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 |
|
are the "mean" prediction of the diffusion network and will sound bland and smeared. |
|
~~OTHER STUFF~~ |
|
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. |
|
Extra keyword args fed to this function get forwarded directly to that API. Documentation |
|
here: https://huggingface.co/docs/transformers/internal/generation_utils |
|
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. |
|
Sample rate is 24kHz. |
|
""" |
|
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed) |
|
|
|
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) |
|
text_tokens = F.pad(text_tokens, (0, 1)) |
|
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.' |
|
if voice_samples is not None: |
|
auto_conditioning = self.get_conditioning_latents(voice_samples, return_mels=False) |
|
else: |
|
auto_conditioning = self.get_random_conditioning_latents() |
|
auto_conditioning = auto_conditioning.to(self.device) |
|
|
|
with torch.no_grad(): |
|
calm_token = 83 |
|
if verbose: |
|
print("Generating autoregressive samples..") |
|
with torch.autocast( |
|
device_type="cuda" , dtype=torch.float16, enabled=self.half |
|
): |
|
fake_inputs = self.autoregressive.compute_embeddings( |
|
auto_conditioning, |
|
text_tokens, |
|
) |
|
gpt_generator = self.autoregressive.get_generator( |
|
fake_inputs=fake_inputs, |
|
top_k=50, |
|
top_p=top_p, |
|
temperature=temperature, |
|
do_sample=True, |
|
num_beams=1, |
|
num_return_sequences=1, |
|
length_penalty=float(length_penalty), |
|
repetition_penalty=float(repetition_penalty), |
|
output_attentions=False, |
|
output_hidden_states=True, |
|
**hf_generate_kwargs, |
|
) |
|
all_latents = [] |
|
codes_ = [] |
|
wav_gen_prev = None |
|
wav_overlap = None |
|
is_end = False |
|
first_buffer = 60 |
|
while not is_end: |
|
try: |
|
with torch.autocast( |
|
device_type="cuda", dtype=torch.float16, enabled=self.half |
|
): |
|
codes, latent = next(gpt_generator) |
|
all_latents += [latent] |
|
codes_ += [codes] |
|
except StopIteration: |
|
is_end = True |
|
|
|
if is_end or (stream_chunk_size > 0 and len(codes_) >= max(stream_chunk_size, first_buffer)): |
|
first_buffer = 0 |
|
gpt_latents = torch.cat(all_latents, dim=0)[None, :] |
|
wav_gen = self.hifi_decoder.inference(gpt_latents.to(self.device), auto_conditioning) |
|
wav_gen = wav_gen.squeeze() |
|
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks( |
|
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len |
|
) |
|
codes_ = [] |
|
yield wav_chunk |
|
def tts(self, text, voice_samples=None, k=1, verbose=True, use_deterministic_seed=None, |
|
|
|
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, |
|
top_p=.8, max_mel_tokens=500, |
|
|
|
cvvp_amount=.0, |
|
**hf_generate_kwargs): |
|
""" |
|
Produces an audio clip of the given text being spoken with the given reference voice. |
|
:param text: Text to be spoken. |
|
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. |
|
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which |
|
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None. |
|
Conditioning latents can be retrieved via get_conditioning_latents(). |
|
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. |
|
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. |
|
~~AUTOREGRESSIVE KNOBS~~ |
|
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP. |
|
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". |
|
:param temperature: The softmax temperature of the autoregressive model. |
|
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. |
|
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence |
|
of long silences or "uhhhhhhs", etc. |
|
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. |
|
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. |
|
~~DIFFUSION KNOBS~~ |
|
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine |
|
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, |
|
however. |
|
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for |
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output |
|
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and |
|
dramatically improves realism. |
|
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. |
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. |
|
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k |
|
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 |
|
are the "mean" prediction of the diffusion network and will sound bland and smeared. |
|
~~OTHER STUFF~~ |
|
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. |
|
Extra keyword args fed to this function get forwarded directly to that API. Documentation |
|
here: https://huggingface.co/docs/transformers/internal/generation_utils |
|
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. |
|
Sample rate is 24kHz. |
|
""" |
|
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed) |
|
|
|
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) |
|
text_tokens = F.pad(text_tokens, (0, 1)) |
|
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.' |
|
if voice_samples is not None: |
|
auto_conditioning = self.get_conditioning_latents(voice_samples, return_mels=False) |
|
else: |
|
auto_conditioning = self.get_random_conditioning_latents() |
|
auto_conditioning = auto_conditioning.to(self.device) |
|
|
|
with torch.no_grad(): |
|
calm_token = 83 |
|
if verbose: |
|
print("Generating autoregressive samples..") |
|
with torch.autocast( |
|
device_type="cuda" , dtype=torch.float16, enabled=self.half |
|
): |
|
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens, |
|
top_k=50, |
|
top_p=top_p, |
|
temperature=temperature, |
|
do_sample=True, |
|
num_beams=1, |
|
num_return_sequences=1, |
|
length_penalty=float(length_penalty), |
|
repetition_penalty=float(repetition_penalty), |
|
output_attentions=False, |
|
output_hidden_states=True, |
|
**hf_generate_kwargs) |
|
gpt_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1), |
|
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes, |
|
torch.tensor([codes.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device), |
|
return_latent=True, clip_inputs=False) |
|
if verbose: |
|
print("generating audio..") |
|
wav_gen = self.hifi_decoder.inference(gpt_latents.to(self.device), auto_conditioning) |
|
return wav_gen |
|
def deterministic_state(self, seed=None): |
|
""" |
|
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be |
|
reproduced. |
|
""" |
|
seed = int(time()) if seed is None else seed |
|
torch.manual_seed(seed) |
|
random.seed(seed) |
|
|
|
|
|
|
|
return seed |
|
|