File size: 10,678 Bytes
17a02e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import torch
from open_clip import create_model
from transformers import PretrainedConfig, PreTrainedModel
from transformers.models.siglip.modeling_siglip import SiglipOutput
from typing import Optional, Tuple, Union, List
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
import string
import ftfy
import html
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def canonicalize_text(
text,
*,
keep_punctuation_exact_string=None,
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
):
"""Returns canonicalized `text` (lowercase and punctuation removed).
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
Args:
text: string to be canonicalized.
keep_punctuation_exact_string: If provided, then this exact string kept.
For example providing '{}' will keep any occurrences of '{}' (but will
still remove '{' and '}' that appear separately).
"""
text = text.replace("_", " ")
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
part.translate(trans_punctuation)
for part in text.split(keep_punctuation_exact_string)
)
else:
text = text.translate(trans_punctuation)
text = text.lower()
text = " ".join(text.split())
return text.strip()
def _clean_canonicalize(x):
# basic, remove whitespace, remove punctuation, lower case
return canonicalize_text(basic_clean(x))
class MarqoFashionSigLIPConfig(PretrainedConfig):
def __init__(
self,
open_clip_model_name: str = "",
**kwargs,
):
super().__init__(**kwargs)
self.open_clip_model_name = open_clip_model_name
class MarqoFashionSigLIPProcessor(ProcessorMixin):
r"""
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`]):
The image processor is a required input.
tokenizer ([`T5TokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = "T5TokenizerFast"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: int = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
if isinstance(text, str):
text = [text]
text = [_clean_canonicalize(raw_text) for raw_text in text]
encoding = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
if images is not None:
try:
images = [image.convert('RGB') for image in images] if isinstance(images, list) else images.convert('RGB')
except:
images = images
image_features = self.image_processor(images, return_tensors=return_tensors)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class MarqoFashionSigLIP(PreTrainedModel):
config_class = MarqoFashionSigLIPConfig
def __init__(self, config: MarqoFashionSigLIPConfig):
super().__init__(config)
self.config = config
self.model = create_model(config.open_clip_model_name, output_dict=True)
self.model.eval()
self.model.to(self.device)
def get_image_features(
self,
pixel_values: torch.FloatTensor,
normalize: bool = False,
**kwargs
) -> torch.FloatTensor:
with torch.inference_mode():
image_features = self.model.encode_image(pixel_values, normalize=normalize)
return image_features
def get_text_features(
self,
input_ids: torch.Tensor,
normalize: bool = False,
**kwargs
) -> torch.FloatTensor:
with torch.inference_mode():
text_features = self.model.encode_text(input_ids, normalize=normalize)
return text_features
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SiglipOutput]:
vision_outputs = self.get_image_features(pixel_values=pixel_values, normalize=True)
text_outputs = self.get_text_features(input_ids=input_ids, normalize=True)
logits_per_text = text_outputs @ vision_outputs.T
logits_per_image = logits_per_text.T
if not return_dict:
return logits_per_image, logits_per_text, text_outputs, vision_outputs
return SiglipOutput(
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_outputs,
image_embeds=vision_outputs
)
|