Initial commit
Browse files- config.json +38 -0
- configuration_time_moe.py +65 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modeling_time_moe.py +1176 -0
- ts_generation_mixin.py +234 -0
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "time_moe_50m",
|
3 |
+
"apply_aux_loss": true,
|
4 |
+
"architectures": [
|
5 |
+
"TimeMoeForPrediction"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_time_moe.TimeMoeConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_time_moe.TimeMoeForPrediction"
|
10 |
+
},
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 384,
|
14 |
+
"horizon_lengths": [
|
15 |
+
1,
|
16 |
+
8,
|
17 |
+
32,
|
18 |
+
64
|
19 |
+
],
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"input_size": 1,
|
22 |
+
"intermediate_size": 1536,
|
23 |
+
"max_position_embeddings": 4096,
|
24 |
+
"model_type": "time_moe",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_experts": 8,
|
27 |
+
"num_experts_per_tok": 2,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"num_key_value_heads": 12,
|
30 |
+
"rms_norm_eps": 1e-06,
|
31 |
+
"rope_theta": 10000,
|
32 |
+
"router_aux_loss_factor": 0.02,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.40.1",
|
36 |
+
"use_cache": true,
|
37 |
+
"use_dense": false
|
38 |
+
}
|
configuration_time_moe.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class TimeMoeConfig(PretrainedConfig):
|
6 |
+
model_type = "time_moe"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
input_size: int = 1,
|
12 |
+
hidden_size: int = 4096,
|
13 |
+
intermediate_size: int = 22016,
|
14 |
+
horizon_lengths: List[int] = 1,
|
15 |
+
num_hidden_layers: int = 32,
|
16 |
+
num_attention_heads: int = 32,
|
17 |
+
num_key_value_heads: int = None,
|
18 |
+
hidden_act: str = "silu",
|
19 |
+
num_experts_per_tok: int = 2,
|
20 |
+
num_experts: int = 1,
|
21 |
+
max_position_embeddings: int = 32768,
|
22 |
+
initializer_range: float = 0.02,
|
23 |
+
rms_norm_eps: float = 1e-6,
|
24 |
+
use_cache: bool = True,
|
25 |
+
use_dense: bool = False,
|
26 |
+
rope_theta: int = 10000,
|
27 |
+
attention_dropout: float = 0.0,
|
28 |
+
apply_aux_loss: bool = True,
|
29 |
+
router_aux_loss_factor: float = 0.02,
|
30 |
+
tie_word_embeddings: bool = False,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.input_size = input_size
|
34 |
+
self.hidden_size = hidden_size
|
35 |
+
self.intermediate_size = intermediate_size
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.num_hidden_layers = num_hidden_layers
|
38 |
+
self.num_attention_heads = num_attention_heads
|
39 |
+
|
40 |
+
if num_key_value_heads is None:
|
41 |
+
num_key_value_heads = num_attention_heads
|
42 |
+
|
43 |
+
self.num_key_value_heads = num_key_value_heads
|
44 |
+
self.hidden_act = hidden_act
|
45 |
+
if isinstance(horizon_lengths, int):
|
46 |
+
horizon_lengths = [horizon_lengths]
|
47 |
+
self.horizon_lengths = horizon_lengths # Predict horizon length for each prediction.
|
48 |
+
self.num_experts_per_tok = num_experts_per_tok
|
49 |
+
self.num_experts = num_experts
|
50 |
+
self.initializer_range = initializer_range
|
51 |
+
self.rms_norm_eps = rms_norm_eps
|
52 |
+
self.use_cache = use_cache
|
53 |
+
self.use_dense = use_dense
|
54 |
+
self.rope_theta = rope_theta
|
55 |
+
self.attention_dropout = attention_dropout
|
56 |
+
self.apply_aux_loss = apply_aux_loss
|
57 |
+
self.router_aux_loss_factor = router_aux_loss_factor
|
58 |
+
|
59 |
+
assert self.use_dense ^ self.apply_aux_loss, 'Both use_dense and apply_aux_loss cannot be set to True or False at the same time.'
|
60 |
+
|
61 |
+
kwargs.pop('tie_word_embeddings', None)
|
62 |
+
super().__init__(
|
63 |
+
tie_word_embeddings=tie_word_embeddings,
|
64 |
+
**kwargs,
|
65 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.40.1"
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0127209833663df6f5ae3cf1c3316f739a8dd1dae27e59036268bbfdb48f91a4
|
3 |
+
size 226760264
|
modeling_time_moe.py
ADDED
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Tuple, List, Union
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers import PreTrainedModel, Cache, DynamicCache, StaticCache
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
11 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
|
12 |
+
from transformers.utils import logging, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10
|
13 |
+
|
14 |
+
from .configuration_time_moe import TimeMoeConfig
|
15 |
+
from .ts_generation_mixin import TSGenerationMixin
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
if is_flash_attn_2_available():
|
20 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
21 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
22 |
+
|
23 |
+
|
24 |
+
def _get_unpad_data(attention_mask):
|
25 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
26 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
27 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
28 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
29 |
+
return (
|
30 |
+
indices,
|
31 |
+
cu_seqlens,
|
32 |
+
max_seqlen_in_batch,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def load_balancing_loss_func(
|
37 |
+
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
|
38 |
+
top_k: int,
|
39 |
+
num_experts: int = None,
|
40 |
+
attention_mask: Optional[torch.Tensor] = None
|
41 |
+
) -> torch.Tensor:
|
42 |
+
r"""
|
43 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
44 |
+
|
45 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
46 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
47 |
+
experts is too unbalanced.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor], List[torch.Tensor]):
|
51 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
52 |
+
shape [batch_size X sequence_length, num_experts].
|
53 |
+
top_k (`int`)
|
54 |
+
Selected Top k over the experts.
|
55 |
+
attention_mask (`torch.Tensor`, None):
|
56 |
+
The attention_mask used in forward function
|
57 |
+
shape [batch_size X sequence_length] if not None.
|
58 |
+
num_experts (`int`, *optional*):
|
59 |
+
Number of experts
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
The auxiliary loss.
|
63 |
+
"""
|
64 |
+
if gate_logits is None or not isinstance(gate_logits, (tuple, list)) or gate_logits[0] is None:
|
65 |
+
return None
|
66 |
+
|
67 |
+
compute_device = gate_logits[0].device
|
68 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
69 |
+
|
70 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
71 |
+
|
72 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
73 |
+
|
74 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
75 |
+
|
76 |
+
if attention_mask is None:
|
77 |
+
# Compute the percentage of tokens routed to each expert
|
78 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
79 |
+
|
80 |
+
# Compute the average probability of routing to these experts
|
81 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
82 |
+
else:
|
83 |
+
batch_size, sequence_length = attention_mask.shape
|
84 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
85 |
+
|
86 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
87 |
+
expert_attention_mask = (
|
88 |
+
attention_mask[None, :, :, None, None]
|
89 |
+
.expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts))
|
90 |
+
.reshape(-1, 2, num_experts)
|
91 |
+
.to(compute_device)
|
92 |
+
)
|
93 |
+
|
94 |
+
# Compute the percentage of tokens routed to each experts
|
95 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
96 |
+
expert_attention_mask, dim=0
|
97 |
+
)
|
98 |
+
|
99 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
100 |
+
router_per_expert_attention_mask = (
|
101 |
+
attention_mask[None, :, :, None]
|
102 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
103 |
+
.reshape(-1, num_experts)
|
104 |
+
.to(compute_device)
|
105 |
+
)
|
106 |
+
|
107 |
+
# Compute the average probability of routing to these experts
|
108 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
109 |
+
router_per_expert_attention_mask, dim=0
|
110 |
+
)
|
111 |
+
|
112 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(dim=0))
|
113 |
+
|
114 |
+
return overall_loss * num_experts
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
118 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
119 |
+
"""
|
120 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
121 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
122 |
+
"""
|
123 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
124 |
+
if n_rep == 1:
|
125 |
+
return hidden_states
|
126 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
127 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
128 |
+
|
129 |
+
|
130 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
131 |
+
def rotate_half(x):
|
132 |
+
"""Rotates half the hidden dims of the input."""
|
133 |
+
x1 = x[..., : x.shape[-1] // 2]
|
134 |
+
x2 = x[..., x.shape[-1] // 2:]
|
135 |
+
return torch.cat((-x2, x1), dim=-1)
|
136 |
+
|
137 |
+
|
138 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
139 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
140 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
q (`torch.Tensor`): The query tensor.
|
144 |
+
k (`torch.Tensor`): The key tensor.
|
145 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
146 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
147 |
+
position_ids (`torch.Tensor`):
|
148 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
149 |
+
used to pass offsetted position ids when working with a KV-cache.
|
150 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
151 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
152 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
153 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
154 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
155 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
156 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
157 |
+
Returns:
|
158 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
159 |
+
"""
|
160 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
161 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
162 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
163 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
164 |
+
return q_embed, k_embed
|
165 |
+
|
166 |
+
|
167 |
+
class TimeMoeInputEmbedding(nn.Module):
|
168 |
+
"""
|
169 |
+
Use a mlp layer to embedding the time-series.
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(self, config: TimeMoeConfig):
|
173 |
+
super().__init__()
|
174 |
+
self.config = config
|
175 |
+
self.input_size = config.input_size # default 1
|
176 |
+
self.hidden_size = config.hidden_size
|
177 |
+
self.emb_layer = nn.Linear(self.input_size, self.hidden_size, bias=False)
|
178 |
+
self.gate_layer = nn.Linear(self.input_size, self.hidden_size, bias=False)
|
179 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
emb = self.act_fn(self.gate_layer(x)) * self.emb_layer(x)
|
183 |
+
return emb
|
184 |
+
|
185 |
+
|
186 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->TimeMOE
|
187 |
+
class TimeMoeRotaryEmbedding(torch.nn.Module):
|
188 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.dim = dim
|
192 |
+
self.max_position_embeddings = max_position_embeddings
|
193 |
+
self.base = base
|
194 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
195 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
196 |
+
|
197 |
+
# Build here to make `torch.jit.trace` work.
|
198 |
+
self._set_cos_sin_cache(
|
199 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
200 |
+
)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
205 |
+
|
206 |
+
freqs = torch.outer(t, self.inv_freq)
|
207 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
210 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
211 |
+
|
212 |
+
def forward(self, x, seq_len=None):
|
213 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
214 |
+
if seq_len > self.max_seq_len_cached:
|
215 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
216 |
+
|
217 |
+
return (
|
218 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
219 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->TimeMOE
|
224 |
+
class TimeMoeRMSNorm(torch.nn.Module):
|
225 |
+
def __init__(self, hidden_size, eps=1e-6):
|
226 |
+
super().__init__()
|
227 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
228 |
+
self.variance_epsilon = eps
|
229 |
+
|
230 |
+
def forward(self, hidden_states):
|
231 |
+
input_dtype = hidden_states.dtype
|
232 |
+
hidden_states = hidden_states.to(torch.float32)
|
233 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
234 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
235 |
+
return self.weight * hidden_states.to(input_dtype)
|
236 |
+
|
237 |
+
|
238 |
+
class TimeMoeTemporalBlock(nn.Module):
|
239 |
+
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
240 |
+
super().__init__()
|
241 |
+
self.hidden_size = hidden_size
|
242 |
+
self.intermediate_size = intermediate_size
|
243 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
244 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
245 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
246 |
+
self.act_fn = ACT2FN[hidden_act]
|
247 |
+
|
248 |
+
def forward(self, hidden_state):
|
249 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
250 |
+
|
251 |
+
|
252 |
+
class TimeMoeMLP(TimeMoeTemporalBlock):
|
253 |
+
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
254 |
+
super().__init__(hidden_size, intermediate_size, hidden_act)
|
255 |
+
|
256 |
+
def forward(self, hidden_state):
|
257 |
+
return super().forward(hidden_state), None
|
258 |
+
|
259 |
+
|
260 |
+
class TimeMoeSparseExpertsLayer(nn.Module):
|
261 |
+
def __init__(self, config):
|
262 |
+
super().__init__()
|
263 |
+
self.config = config
|
264 |
+
self.top_k = config.num_experts_per_tok
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
self.num_experts = config.num_experts
|
267 |
+
self.norm_topk_prob = False
|
268 |
+
|
269 |
+
moe_intermediate_size = self.config.intermediate_size // self.top_k
|
270 |
+
|
271 |
+
# gating
|
272 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
273 |
+
self.experts = nn.ModuleList(
|
274 |
+
[TimeMoeTemporalBlock(
|
275 |
+
hidden_size=self.config.hidden_size,
|
276 |
+
intermediate_size=moe_intermediate_size,
|
277 |
+
hidden_act=self.config.hidden_act,
|
278 |
+
) for _ in range(self.num_experts)]
|
279 |
+
)
|
280 |
+
|
281 |
+
self.shared_expert = TimeMoeTemporalBlock(
|
282 |
+
hidden_size=self.config.hidden_size,
|
283 |
+
intermediate_size=self.config.intermediate_size,
|
284 |
+
hidden_act=self.config.hidden_act,
|
285 |
+
)
|
286 |
+
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)
|
287 |
+
|
288 |
+
def forward(self, hidden_states: torch.Tensor):
|
289 |
+
""" """
|
290 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
291 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
292 |
+
# router_logits: (batch * sequence_length, n_experts)
|
293 |
+
router_logits = self.gate(hidden_states)
|
294 |
+
|
295 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
296 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
297 |
+
if self.norm_topk_prob:
|
298 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
299 |
+
# we cast back to the input dtype
|
300 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
301 |
+
|
302 |
+
final_hidden_states = torch.zeros(
|
303 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
304 |
+
)
|
305 |
+
|
306 |
+
# One hot encode the selected experts to create an expert mask
|
307 |
+
# this will be used to easily index which expert is going to be sollicitated
|
308 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
309 |
+
|
310 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
311 |
+
for expert_idx in range(self.num_experts):
|
312 |
+
expert_layer = self.experts[expert_idx]
|
313 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
314 |
+
|
315 |
+
# Index the correct hidden states and compute the expert hidden state for
|
316 |
+
# the current expert. We need to make sure to multiply the output hidden
|
317 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
318 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
319 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
320 |
+
|
321 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
322 |
+
# the `top_x` tensor here.
|
323 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
324 |
+
|
325 |
+
shared_expert_output = self.shared_expert(hidden_states)
|
326 |
+
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
|
327 |
+
|
328 |
+
final_hidden_states = final_hidden_states + shared_expert_output
|
329 |
+
|
330 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
331 |
+
return final_hidden_states, router_logits
|
332 |
+
|
333 |
+
|
334 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->TimeMoe
|
335 |
+
class TimeMoeAttention(nn.Module):
|
336 |
+
"""
|
337 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
338 |
+
and "Generating Long Sequences with Sparse Transformers".
|
339 |
+
"""
|
340 |
+
|
341 |
+
def __init__(self, config: TimeMoeConfig, layer_idx: Optional[int] = None):
|
342 |
+
super().__init__()
|
343 |
+
self.config = config
|
344 |
+
self.layer_idx = layer_idx
|
345 |
+
if layer_idx is None:
|
346 |
+
logger.warning_once(
|
347 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
348 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
349 |
+
"when creating this class."
|
350 |
+
)
|
351 |
+
|
352 |
+
self.hidden_size = config.hidden_size
|
353 |
+
self.num_heads = config.num_attention_heads
|
354 |
+
self.head_dim = self.hidden_size // self.num_heads
|
355 |
+
self.num_key_value_heads = config.num_key_value_heads
|
356 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
357 |
+
self.max_position_embeddings = config.max_position_embeddings
|
358 |
+
self.rope_theta = config.rope_theta
|
359 |
+
self.is_causal = True
|
360 |
+
self.attention_dropout = config.attention_dropout
|
361 |
+
|
362 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
363 |
+
raise ValueError(
|
364 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
365 |
+
f" and `num_heads`: {self.num_heads})."
|
366 |
+
)
|
367 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
368 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
369 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
370 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
371 |
+
|
372 |
+
self.rotary_emb = TimeMoeRotaryEmbedding(
|
373 |
+
self.head_dim,
|
374 |
+
max_position_embeddings=self.max_position_embeddings,
|
375 |
+
base=self.rope_theta,
|
376 |
+
)
|
377 |
+
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
hidden_states: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
position_ids: Optional[torch.LongTensor] = None,
|
383 |
+
past_key_value: Optional[Cache] = None,
|
384 |
+
output_attentions: bool = False,
|
385 |
+
**kwargs,
|
386 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
387 |
+
if "padding_mask" in kwargs:
|
388 |
+
warnings.warn(
|
389 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
390 |
+
)
|
391 |
+
bsz, q_len, _ = hidden_states.size()
|
392 |
+
|
393 |
+
query_states = self.q_proj(hidden_states)
|
394 |
+
key_states = self.k_proj(hidden_states)
|
395 |
+
value_states = self.v_proj(hidden_states)
|
396 |
+
|
397 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
398 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
399 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
400 |
+
|
401 |
+
kv_seq_len = key_states.shape[-2]
|
402 |
+
if past_key_value is not None:
|
403 |
+
if self.layer_idx is None:
|
404 |
+
raise ValueError(
|
405 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
406 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
407 |
+
"with a layer index."
|
408 |
+
)
|
409 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
410 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
411 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
412 |
+
|
413 |
+
if past_key_value is not None:
|
414 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
415 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
416 |
+
|
417 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
418 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
419 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
420 |
+
|
421 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
422 |
+
|
423 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
424 |
+
raise ValueError(
|
425 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
426 |
+
f" {attn_weights.size()}"
|
427 |
+
)
|
428 |
+
|
429 |
+
if attention_mask is not None:
|
430 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
431 |
+
raise ValueError(
|
432 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
433 |
+
)
|
434 |
+
|
435 |
+
attn_weights = attn_weights + attention_mask
|
436 |
+
|
437 |
+
# upcast attention to fp32
|
438 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
439 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
440 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
441 |
+
|
442 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
443 |
+
raise ValueError(
|
444 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
445 |
+
f" {attn_output.size()}"
|
446 |
+
)
|
447 |
+
|
448 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
449 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
450 |
+
|
451 |
+
attn_output = self.o_proj(attn_output)
|
452 |
+
|
453 |
+
if not output_attentions:
|
454 |
+
attn_weights = None
|
455 |
+
|
456 |
+
return attn_output, attn_weights, past_key_value
|
457 |
+
|
458 |
+
|
459 |
+
class TimeMoeFlashAttention2(TimeMoeAttention):
|
460 |
+
|
461 |
+
def __init__(self, *args, **kwargs):
|
462 |
+
super().__init__(*args, **kwargs)
|
463 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
464 |
+
|
465 |
+
def forward(
|
466 |
+
self,
|
467 |
+
hidden_states: torch.Tensor,
|
468 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
469 |
+
position_ids: Optional[torch.LongTensor] = None,
|
470 |
+
past_key_value: Optional[Cache] = None,
|
471 |
+
output_attentions: bool = False,
|
472 |
+
use_cache: bool = False,
|
473 |
+
cache_position: Optional[torch.LongTensor] = None,
|
474 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
475 |
+
if isinstance(past_key_value, StaticCache):
|
476 |
+
raise ValueError(
|
477 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
478 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
479 |
+
)
|
480 |
+
|
481 |
+
output_attentions = False
|
482 |
+
|
483 |
+
bsz, q_len, _ = hidden_states.size()
|
484 |
+
|
485 |
+
query_states = self.q_proj(hidden_states)
|
486 |
+
key_states = self.k_proj(hidden_states)
|
487 |
+
value_states = self.v_proj(hidden_states)
|
488 |
+
|
489 |
+
# Flash attention requires the input to have the shape
|
490 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
491 |
+
# therefore we just need to keep the original shape
|
492 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
493 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
494 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
495 |
+
|
496 |
+
kv_seq_len = key_states.shape[-2]
|
497 |
+
if past_key_value is not None:
|
498 |
+
if self.layer_idx is None:
|
499 |
+
raise ValueError(
|
500 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
501 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
502 |
+
"with a layer index."
|
503 |
+
)
|
504 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
505 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
506 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
507 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
508 |
+
|
509 |
+
if past_key_value is not None:
|
510 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
511 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
512 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
513 |
+
|
514 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
515 |
+
# to be able to avoid many of these transpose/reshape/view.
|
516 |
+
query_states = query_states.transpose(1, 2)
|
517 |
+
key_states = key_states.transpose(1, 2)
|
518 |
+
value_states = value_states.transpose(1, 2)
|
519 |
+
|
520 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
521 |
+
|
522 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
523 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
524 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
525 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
526 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
527 |
+
|
528 |
+
input_dtype = query_states.dtype
|
529 |
+
if input_dtype == torch.float32:
|
530 |
+
|
531 |
+
if torch.is_autocast_enabled():
|
532 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
533 |
+
# Handle the case where the model is quantized
|
534 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
535 |
+
target_dtype = self.config._pre_quantization_dtype
|
536 |
+
else:
|
537 |
+
target_dtype = self.q_proj.weight.dtype
|
538 |
+
|
539 |
+
logger.warning_once(
|
540 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
541 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
542 |
+
f" {target_dtype}."
|
543 |
+
)
|
544 |
+
|
545 |
+
query_states = query_states.to(target_dtype)
|
546 |
+
key_states = key_states.to(target_dtype)
|
547 |
+
value_states = value_states.to(target_dtype)
|
548 |
+
|
549 |
+
attn_output = self._flash_attention_forward(
|
550 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
551 |
+
)
|
552 |
+
|
553 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
554 |
+
attn_output = self.o_proj(attn_output)
|
555 |
+
|
556 |
+
if not output_attentions:
|
557 |
+
attn_weights = None
|
558 |
+
|
559 |
+
return attn_output, attn_weights, past_key_value
|
560 |
+
|
561 |
+
def _flash_attention_forward(
|
562 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
563 |
+
):
|
564 |
+
"""
|
565 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
566 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
query_states (`torch.Tensor`):
|
570 |
+
Input query states to be passed to Flash Attention API
|
571 |
+
key_states (`torch.Tensor`):
|
572 |
+
Input key states to be passed to Flash Attention API
|
573 |
+
value_states (`torch.Tensor`):
|
574 |
+
Input value states to be passed to Flash Attention API
|
575 |
+
attention_mask (`torch.Tensor`):
|
576 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
577 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
578 |
+
dropout (`float`):
|
579 |
+
Attention dropout
|
580 |
+
softmax_scale (`float`, *optional*):
|
581 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
582 |
+
"""
|
583 |
+
if not self._flash_attn_uses_top_left_mask:
|
584 |
+
causal = self.is_causal
|
585 |
+
else:
|
586 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
587 |
+
causal = self.is_causal and query_length != 1
|
588 |
+
|
589 |
+
origin_dtype = query_states.dtype
|
590 |
+
if origin_dtype not in [torch.bfloat16, torch.float16]:
|
591 |
+
query_states = query_states.to(dtype=torch.bfloat16)
|
592 |
+
key_states = key_states.to(dtype=torch.bfloat16)
|
593 |
+
value_states = value_states.to(dtype=torch.bfloat16)
|
594 |
+
|
595 |
+
# without attention mask to faster speed
|
596 |
+
attn_output = flash_attn_func(
|
597 |
+
query_states,
|
598 |
+
key_states,
|
599 |
+
value_states,
|
600 |
+
dropout,
|
601 |
+
softmax_scale=softmax_scale,
|
602 |
+
causal=causal
|
603 |
+
)
|
604 |
+
if origin_dtype not in [torch.bfloat16, torch.float16]:
|
605 |
+
return attn_output.to(origin_dtype)
|
606 |
+
else:
|
607 |
+
return attn_output
|
608 |
+
|
609 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
610 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
611 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
612 |
+
|
613 |
+
key_layer = index_first_axis(
|
614 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
615 |
+
)
|
616 |
+
value_layer = index_first_axis(
|
617 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
618 |
+
)
|
619 |
+
if query_length == kv_seq_len:
|
620 |
+
query_layer = index_first_axis(
|
621 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
622 |
+
)
|
623 |
+
cu_seqlens_q = cu_seqlens_k
|
624 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
625 |
+
indices_q = indices_k
|
626 |
+
elif query_length == 1:
|
627 |
+
max_seqlen_in_batch_q = 1
|
628 |
+
cu_seqlens_q = torch.arange(
|
629 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
630 |
+
) # There is a memcpy here, that is very bad.
|
631 |
+
indices_q = cu_seqlens_q[:-1]
|
632 |
+
query_layer = query_layer.squeeze(1)
|
633 |
+
else:
|
634 |
+
# The -q_len: slice assumes left padding.
|
635 |
+
attention_mask = attention_mask[:, -query_length:]
|
636 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
637 |
+
|
638 |
+
return (
|
639 |
+
query_layer,
|
640 |
+
key_layer,
|
641 |
+
value_layer,
|
642 |
+
indices_q,
|
643 |
+
(cu_seqlens_q, cu_seqlens_k),
|
644 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
645 |
+
)
|
646 |
+
|
647 |
+
|
648 |
+
TIME_MOE_ATTENTION_CLASSES = {
|
649 |
+
"eager": TimeMoeAttention,
|
650 |
+
'flash_attention_2': TimeMoeFlashAttention2,
|
651 |
+
}
|
652 |
+
|
653 |
+
|
654 |
+
class TimeMoeDecoderLayer(nn.Module):
|
655 |
+
def __init__(self, config: TimeMoeConfig, layer_idx: int):
|
656 |
+
super().__init__()
|
657 |
+
self.config = config
|
658 |
+
self.hidden_size = config.hidden_size
|
659 |
+
|
660 |
+
self.self_attn = TIME_MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
661 |
+
|
662 |
+
if self.config.use_dense:
|
663 |
+
self.ffn_layer = TimeMoeMLP(
|
664 |
+
hidden_size=self.config.hidden_size,
|
665 |
+
intermediate_size=self.config.intermediate_size,
|
666 |
+
hidden_act=self.config.hidden_act,
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
self.ffn_layer = TimeMoeSparseExpertsLayer(config)
|
670 |
+
self.input_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
671 |
+
self.post_attention_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
672 |
+
|
673 |
+
def forward(
|
674 |
+
self,
|
675 |
+
hidden_states: torch.Tensor,
|
676 |
+
attention_mask: Optional[torch.Tensor] = None,
|
677 |
+
position_ids: Optional[torch.LongTensor] = None,
|
678 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
679 |
+
output_attentions: Optional[bool] = False,
|
680 |
+
use_cache: Optional[bool] = False,
|
681 |
+
**kwargs,
|
682 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
|
683 |
+
if "padding_mask" in kwargs:
|
684 |
+
warnings.warn(
|
685 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
686 |
+
"Please make sure use `attention_mask` instead.`"
|
687 |
+
)
|
688 |
+
"""
|
689 |
+
Args:
|
690 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
691 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
692 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
693 |
+
output_attentions (`bool`, *optional*):
|
694 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
695 |
+
returned tensors for more detail.
|
696 |
+
use_cache (`bool`, *optional*):
|
697 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
698 |
+
(see `past_key_values`).
|
699 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
700 |
+
"""
|
701 |
+
|
702 |
+
residual = hidden_states
|
703 |
+
|
704 |
+
hidden_states = self.input_layernorm(hidden_states)
|
705 |
+
|
706 |
+
# Self Attention
|
707 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
708 |
+
hidden_states=hidden_states,
|
709 |
+
attention_mask=attention_mask,
|
710 |
+
position_ids=position_ids,
|
711 |
+
past_key_value=past_key_value,
|
712 |
+
output_attentions=output_attentions,
|
713 |
+
use_cache=use_cache,
|
714 |
+
)
|
715 |
+
hidden_states = residual + hidden_states
|
716 |
+
|
717 |
+
# Fully Connected
|
718 |
+
residual = hidden_states
|
719 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
720 |
+
hidden_states, router_logits = self.ffn_layer(hidden_states)
|
721 |
+
hidden_states = residual + hidden_states
|
722 |
+
|
723 |
+
if not output_attentions:
|
724 |
+
self_attn_weights = None
|
725 |
+
|
726 |
+
if not use_cache:
|
727 |
+
present_key_value = None
|
728 |
+
return hidden_states, self_attn_weights, present_key_value, router_logits
|
729 |
+
|
730 |
+
|
731 |
+
class TimeMoePreTrainedModel(PreTrainedModel):
|
732 |
+
config_class = TimeMoeConfig
|
733 |
+
base_model_prefix = "model"
|
734 |
+
supports_gradient_checkpointing = True
|
735 |
+
_no_split_modules = ["TimeMoeDecoderLayer"]
|
736 |
+
_skip_keys_device_placement = "past_key_values"
|
737 |
+
_supports_flash_attn_2 = True
|
738 |
+
_supports_sdpa = False
|
739 |
+
_supports_cache_class = True
|
740 |
+
|
741 |
+
def _init_weights(self, module):
|
742 |
+
std = self.config.initializer_range
|
743 |
+
if isinstance(module, torch.nn.Linear):
|
744 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
745 |
+
if module.bias is not None:
|
746 |
+
module.bias.data.zero_()
|
747 |
+
elif isinstance(module, torch.nn.Embedding):
|
748 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
749 |
+
if module.padding_idx is not None:
|
750 |
+
module.weight.data[module.padding_idx].zero_()
|
751 |
+
|
752 |
+
|
753 |
+
class TimeMoeModel(TimeMoePreTrainedModel):
|
754 |
+
"""
|
755 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TimeMoeDecoderLayer`]
|
756 |
+
|
757 |
+
Args:
|
758 |
+
config: TimeMoeConfig
|
759 |
+
"""
|
760 |
+
|
761 |
+
def __init__(self, config: TimeMoeConfig):
|
762 |
+
super().__init__(config)
|
763 |
+
# self.padding_idx = config.pad_token_id
|
764 |
+
|
765 |
+
self.embed_layer = TimeMoeInputEmbedding(config)
|
766 |
+
self.layers = nn.ModuleList(
|
767 |
+
[TimeMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
768 |
+
)
|
769 |
+
self._attn_implementation = config._attn_implementation
|
770 |
+
self.norm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
771 |
+
|
772 |
+
self.gradient_checkpointing = False
|
773 |
+
# Initialize weights and apply final processing
|
774 |
+
self.post_init()
|
775 |
+
|
776 |
+
def forward(
|
777 |
+
self,
|
778 |
+
input_ids: torch.FloatTensor = None,
|
779 |
+
attention_mask: Optional[torch.Tensor] = None,
|
780 |
+
position_ids: Optional[torch.LongTensor] = None,
|
781 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
782 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
783 |
+
use_cache: Optional[bool] = None,
|
784 |
+
output_attentions: Optional[bool] = None,
|
785 |
+
output_hidden_states: Optional[bool] = None,
|
786 |
+
return_dict: Optional[bool] = None,
|
787 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
788 |
+
# input_ids is the input of time series, its shape is [batch_size, seq_len, input_size]
|
789 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
790 |
+
output_hidden_states = (
|
791 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
792 |
+
)
|
793 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
794 |
+
|
795 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
796 |
+
|
797 |
+
# retrieve input_ids and inputs_embeds
|
798 |
+
if input_ids is not None and inputs_embeds is not None:
|
799 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
800 |
+
elif input_ids is not None:
|
801 |
+
if len(input_ids.shape) == 2:
|
802 |
+
input_ids.unsqueeze_(dim=-1)
|
803 |
+
batch_size, seq_length, _ = input_ids.shape
|
804 |
+
elif inputs_embeds is not None:
|
805 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
806 |
+
else:
|
807 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
808 |
+
|
809 |
+
if self.gradient_checkpointing and self.training:
|
810 |
+
if use_cache:
|
811 |
+
logger.warning_once(
|
812 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
813 |
+
)
|
814 |
+
use_cache = False
|
815 |
+
|
816 |
+
past_key_values_length = 0
|
817 |
+
|
818 |
+
if use_cache:
|
819 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
820 |
+
if use_legacy_cache:
|
821 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
822 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
823 |
+
|
824 |
+
if position_ids is None:
|
825 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
826 |
+
position_ids = torch.arange(
|
827 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
828 |
+
)
|
829 |
+
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
830 |
+
position_ids = position_ids.view(-1, seq_length)
|
831 |
+
else:
|
832 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
833 |
+
|
834 |
+
if inputs_embeds is None:
|
835 |
+
inputs_embeds = self.embed_layer(input_ids)
|
836 |
+
|
837 |
+
# 4d mask is passed through the layers
|
838 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
839 |
+
attention_mask,
|
840 |
+
(batch_size, seq_length),
|
841 |
+
inputs_embeds,
|
842 |
+
past_key_values_length,
|
843 |
+
sliding_window=None,
|
844 |
+
)
|
845 |
+
|
846 |
+
hidden_states = inputs_embeds
|
847 |
+
|
848 |
+
# decoder layers
|
849 |
+
all_hidden_states = () if output_hidden_states else None
|
850 |
+
all_self_attns = () if output_attentions else None
|
851 |
+
all_router_logits = ()
|
852 |
+
next_decoder_cache = None
|
853 |
+
|
854 |
+
for decoder_layer in self.layers:
|
855 |
+
if output_hidden_states:
|
856 |
+
all_hidden_states += (hidden_states,)
|
857 |
+
|
858 |
+
if self.gradient_checkpointing and self.training:
|
859 |
+
layer_outputs = self._gradient_checkpointing_func(
|
860 |
+
decoder_layer.__call__,
|
861 |
+
hidden_states,
|
862 |
+
attention_mask,
|
863 |
+
position_ids,
|
864 |
+
past_key_values,
|
865 |
+
output_attentions,
|
866 |
+
use_cache,
|
867 |
+
)
|
868 |
+
else:
|
869 |
+
layer_outputs = decoder_layer(
|
870 |
+
hidden_states,
|
871 |
+
attention_mask=attention_mask,
|
872 |
+
position_ids=position_ids,
|
873 |
+
past_key_value=past_key_values,
|
874 |
+
output_attentions=output_attentions,
|
875 |
+
use_cache=use_cache,
|
876 |
+
)
|
877 |
+
|
878 |
+
hidden_states = layer_outputs[0]
|
879 |
+
|
880 |
+
all_router_logits += (layer_outputs[-1],)
|
881 |
+
|
882 |
+
if output_attentions:
|
883 |
+
all_self_attns += (layer_outputs[1],)
|
884 |
+
|
885 |
+
if use_cache:
|
886 |
+
next_decoder_cache = layer_outputs[2]
|
887 |
+
|
888 |
+
hidden_states = self.norm(hidden_states)
|
889 |
+
|
890 |
+
# add hidden states from the last decoder layer
|
891 |
+
if output_hidden_states:
|
892 |
+
all_hidden_states += (hidden_states,)
|
893 |
+
|
894 |
+
next_cache = None
|
895 |
+
if use_cache:
|
896 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
897 |
+
|
898 |
+
if not return_dict:
|
899 |
+
return tuple(
|
900 |
+
v
|
901 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
902 |
+
if v is not None
|
903 |
+
)
|
904 |
+
return MoeModelOutputWithPast(
|
905 |
+
last_hidden_state=hidden_states,
|
906 |
+
past_key_values=next_cache,
|
907 |
+
hidden_states=all_hidden_states,
|
908 |
+
attentions=all_self_attns,
|
909 |
+
router_logits=all_router_logits
|
910 |
+
)
|
911 |
+
|
912 |
+
|
913 |
+
class TimeMoeOutputLayer(nn.Module):
|
914 |
+
|
915 |
+
def __init__(self, hidden_size: int, horizon_length: int, input_size: int = 1):
|
916 |
+
super().__init__()
|
917 |
+
|
918 |
+
self.out_layer = nn.Linear(
|
919 |
+
hidden_size,
|
920 |
+
input_size * horizon_length,
|
921 |
+
bias=False,
|
922 |
+
)
|
923 |
+
|
924 |
+
def forward(self, x):
|
925 |
+
"""
|
926 |
+
|
927 |
+
Args:
|
928 |
+
x (torch.FloatTensor): with shape [B, seq_len, hidden_size]
|
929 |
+
|
930 |
+
Returns:
|
931 |
+
` torch.FloatTensor: final prediction with shape [B, seq_len, input_size]
|
932 |
+
"""
|
933 |
+
return self.out_layer(x)
|
934 |
+
|
935 |
+
|
936 |
+
class TimeMoeForPrediction(TimeMoePreTrainedModel, TSGenerationMixin):
|
937 |
+
|
938 |
+
def __init__(self, config: TimeMoeConfig):
|
939 |
+
super().__init__(config)
|
940 |
+
self.config = config
|
941 |
+
self.apply_aux_loss = config.apply_aux_loss
|
942 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
943 |
+
self.router_aux_loss_factor = config.router_aux_loss_factor
|
944 |
+
|
945 |
+
self.model = TimeMoeModel(config)
|
946 |
+
# output layer
|
947 |
+
lm_head_list = []
|
948 |
+
self.horizon_length_map = {}
|
949 |
+
for i, horizon_length in enumerate(config.horizon_lengths):
|
950 |
+
lm_head_list.append(
|
951 |
+
TimeMoeOutputLayer(
|
952 |
+
hidden_size=self.config.hidden_size,
|
953 |
+
input_size=self.config.input_size,
|
954 |
+
horizon_length=horizon_length,
|
955 |
+
)
|
956 |
+
)
|
957 |
+
self.horizon_length_map[horizon_length] = i
|
958 |
+
self.lm_heads = nn.ModuleList(lm_head_list)
|
959 |
+
|
960 |
+
self.loss_function = torch.nn.HuberLoss(reduction='none', delta=2.0)
|
961 |
+
|
962 |
+
# Initialize weights and apply final processing
|
963 |
+
self.post_init()
|
964 |
+
|
965 |
+
def set_decoder(self, decoder):
|
966 |
+
self.model = decoder
|
967 |
+
|
968 |
+
def get_decoder(self):
|
969 |
+
return self.model
|
970 |
+
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
input_ids: torch.FloatTensor = None,
|
974 |
+
attention_mask: Optional[torch.Tensor] = None,
|
975 |
+
position_ids: Optional[torch.LongTensor] = None,
|
976 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
977 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
978 |
+
labels: Optional[torch.FloatTensor] = None,
|
979 |
+
loss_masks: Optional[torch.FloatTensor] = None,
|
980 |
+
use_cache: Optional[bool] = None,
|
981 |
+
output_attentions: Optional[bool] = None,
|
982 |
+
output_hidden_states: Optional[bool] = None,
|
983 |
+
return_dict: Optional[bool] = None,
|
984 |
+
max_horizon_length: Optional[int] = None,
|
985 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
986 |
+
|
987 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
988 |
+
output_hidden_states = (
|
989 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
990 |
+
)
|
991 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
992 |
+
|
993 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
994 |
+
outputs = self.model(
|
995 |
+
input_ids=input_ids,
|
996 |
+
attention_mask=attention_mask,
|
997 |
+
position_ids=position_ids,
|
998 |
+
past_key_values=past_key_values,
|
999 |
+
inputs_embeds=inputs_embeds,
|
1000 |
+
use_cache=use_cache,
|
1001 |
+
output_attentions=output_attentions,
|
1002 |
+
output_hidden_states=output_hidden_states,
|
1003 |
+
return_dict=return_dict,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
hidden_states = outputs[0]
|
1007 |
+
predictions = None
|
1008 |
+
|
1009 |
+
loss = None
|
1010 |
+
aux_loss = None
|
1011 |
+
if labels is not None:
|
1012 |
+
# AutoRegressive loss
|
1013 |
+
ar_loss = 0.0
|
1014 |
+
for lm_head, horizon_length in zip(self.lm_heads, self.config.horizon_lengths):
|
1015 |
+
one_predictions = lm_head(hidden_states)
|
1016 |
+
one_loss = self.calc_ar_loss(one_predictions, labels, loss_masks, horizon_length)
|
1017 |
+
ar_loss += one_loss
|
1018 |
+
if predictions is None:
|
1019 |
+
predictions = one_predictions
|
1020 |
+
loss = ar_loss / len(self.config.horizon_lengths)
|
1021 |
+
|
1022 |
+
if self.apply_aux_loss:
|
1023 |
+
router_logits = outputs.router_logits if return_dict else outputs[-1]
|
1024 |
+
|
1025 |
+
temporal_aux_loss = load_balancing_loss_func(
|
1026 |
+
router_logits,
|
1027 |
+
top_k=self.num_experts_per_tok,
|
1028 |
+
num_experts=self.config.num_experts,
|
1029 |
+
attention_mask=attention_mask
|
1030 |
+
)
|
1031 |
+
loss += self.router_aux_loss_factor * temporal_aux_loss.to(loss.device)
|
1032 |
+
else:
|
1033 |
+
if max_horizon_length is None:
|
1034 |
+
horizon_length = self.config.horizon_lengths[0]
|
1035 |
+
max_horizon_length = horizon_length
|
1036 |
+
else:
|
1037 |
+
horizon_length = self.config.horizon_lengths[0]
|
1038 |
+
for h in self.config.horizon_lengths[1:]:
|
1039 |
+
if h > max_horizon_length:
|
1040 |
+
break
|
1041 |
+
else:
|
1042 |
+
horizon_length = h
|
1043 |
+
lm_head = self.lm_heads[self.horizon_length_map[horizon_length]]
|
1044 |
+
predictions = lm_head(hidden_states)
|
1045 |
+
if horizon_length > max_horizon_length:
|
1046 |
+
predictions = predictions[:, :, : self.config.input_size * max_horizon_length]
|
1047 |
+
|
1048 |
+
if not return_dict:
|
1049 |
+
output = (predictions,) + outputs[1:]
|
1050 |
+
return (loss, aux_loss) + output if loss is not None else output
|
1051 |
+
|
1052 |
+
return MoeCausalLMOutputWithPast(
|
1053 |
+
loss=loss,
|
1054 |
+
aux_loss=aux_loss,
|
1055 |
+
logits=predictions,
|
1056 |
+
past_key_values=outputs.past_key_values,
|
1057 |
+
hidden_states=outputs.hidden_states,
|
1058 |
+
attentions=outputs.attentions,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
def calc_ar_loss(self, predictions, labels, loss_masks, horizon_length):
|
1062 |
+
if len(labels.shape) == 2:
|
1063 |
+
labels.unsqueeze_(dim=-1)
|
1064 |
+
# enable model parallelism
|
1065 |
+
labels = labels.to(predictions.device)
|
1066 |
+
if loss_masks is not None and len(loss_masks.shape) == 2:
|
1067 |
+
loss_masks.unsqueeze_(dim=-1)
|
1068 |
+
# enable model parallelism
|
1069 |
+
loss_masks = loss_masks.to(predictions.device)
|
1070 |
+
|
1071 |
+
if horizon_length > 1:
|
1072 |
+
batch_size, seq_len, output_size = predictions.shape
|
1073 |
+
shift_predictions = predictions.view(batch_size, seq_len, horizon_length, -1)
|
1074 |
+
|
1075 |
+
# pad to the same length with predictions
|
1076 |
+
# shape -> [B, input_size, seq_len + horizon_length -1]
|
1077 |
+
labels = F.pad(labels.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0)
|
1078 |
+
|
1079 |
+
# shape -> [B, input_size, seq_len, horizon_length]
|
1080 |
+
shift_labels = labels.unfold(dimension=-1, size=horizon_length, step=1)
|
1081 |
+
shift_labels = shift_labels.permute(0, 2, 3, 1)
|
1082 |
+
|
1083 |
+
if loss_masks is not None:
|
1084 |
+
# pad to the same length with predictions
|
1085 |
+
loss_masks = F.pad(loss_masks.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0)
|
1086 |
+
|
1087 |
+
loss_masks = loss_masks.unfold(dimension=-1, size=horizon_length, step=1)
|
1088 |
+
loss_masks = loss_masks.permute(0, 2, 3, 1)
|
1089 |
+
|
1090 |
+
else:
|
1091 |
+
shift_predictions = predictions
|
1092 |
+
shift_labels = labels
|
1093 |
+
|
1094 |
+
# Calculate loss with mask
|
1095 |
+
# losses = self.loss_function(shift_predictions.to(torch.float32), shift_labels.to(torch.float32))
|
1096 |
+
losses = self.loss_function(shift_predictions, shift_labels)
|
1097 |
+
|
1098 |
+
if loss_masks is not None:
|
1099 |
+
losses = losses * loss_masks
|
1100 |
+
|
1101 |
+
loss = losses.sum() / loss_masks.sum()
|
1102 |
+
else:
|
1103 |
+
loss = torch.mean(losses)
|
1104 |
+
|
1105 |
+
return loss
|
1106 |
+
|
1107 |
+
def prepare_inputs_for_generation(
|
1108 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1109 |
+
):
|
1110 |
+
# Omit tokens covered by past_key_values
|
1111 |
+
if past_key_values is not None:
|
1112 |
+
if isinstance(past_key_values, Cache):
|
1113 |
+
cache_length = past_key_values.get_seq_length()
|
1114 |
+
if isinstance(past_key_values, DynamicCache):
|
1115 |
+
past_length = past_key_values.seen_tokens
|
1116 |
+
else:
|
1117 |
+
past_length = cache_length
|
1118 |
+
|
1119 |
+
max_cache_length = past_key_values.get_max_length()
|
1120 |
+
else:
|
1121 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1122 |
+
max_cache_length = None
|
1123 |
+
|
1124 |
+
# Keep only the unprocessed tokens:
|
1125 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1126 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1127 |
+
# input)
|
1128 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1129 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
1130 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1131 |
+
# input_ids based on the past_length.
|
1132 |
+
elif past_length < input_ids.shape[1]:
|
1133 |
+
input_ids = input_ids[:, past_length:]
|
1134 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1135 |
+
|
1136 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1137 |
+
if (
|
1138 |
+
max_cache_length is not None
|
1139 |
+
and attention_mask is not None
|
1140 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1141 |
+
):
|
1142 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1143 |
+
|
1144 |
+
position_ids = kwargs.get("position_ids", None)
|
1145 |
+
if attention_mask is not None and position_ids is None:
|
1146 |
+
# create position_ids on the fly for batch generation
|
1147 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1148 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1149 |
+
if past_key_values:
|
1150 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1151 |
+
|
1152 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1153 |
+
if inputs_embeds is not None and past_key_values is None:
|
1154 |
+
logger.info('Use input_embedding')
|
1155 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1156 |
+
else:
|
1157 |
+
model_inputs = {"input_ids": input_ids}
|
1158 |
+
|
1159 |
+
model_inputs.update(
|
1160 |
+
{
|
1161 |
+
"position_ids": position_ids,
|
1162 |
+
"past_key_values": past_key_values,
|
1163 |
+
"use_cache": kwargs.get("use_cache"),
|
1164 |
+
"attention_mask": attention_mask,
|
1165 |
+
}
|
1166 |
+
)
|
1167 |
+
return model_inputs
|
1168 |
+
|
1169 |
+
@staticmethod
|
1170 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1171 |
+
reordered_past = ()
|
1172 |
+
for layer_past in past_key_values:
|
1173 |
+
reordered_past += (
|
1174 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1175 |
+
)
|
1176 |
+
return reordered_past
|
ts_generation_mixin.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Any, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
|
7 |
+
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
|
8 |
+
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
|
9 |
+
from transformers.utils import ModelOutput
|
10 |
+
|
11 |
+
|
12 |
+
class TSGenerationMixin(GenerationMixin):
|
13 |
+
|
14 |
+
def _greedy_search(
|
15 |
+
self,
|
16 |
+
input_ids: torch.LongTensor,
|
17 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
18 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
19 |
+
max_length: Optional[int] = None,
|
20 |
+
pad_token_id: Optional[int] = None,
|
21 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
22 |
+
output_attentions: Optional[bool] = None,
|
23 |
+
output_hidden_states: Optional[bool] = None,
|
24 |
+
output_scores: Optional[bool] = None,
|
25 |
+
output_logits: Optional[bool] = None,
|
26 |
+
return_dict_in_generate: Optional[bool] = None,
|
27 |
+
synced_gpus: bool = False,
|
28 |
+
streamer: Optional["BaseStreamer"] = None,
|
29 |
+
**model_kwargs,
|
30 |
+
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
|
31 |
+
# init values
|
32 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
33 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
34 |
+
if max_length is not None:
|
35 |
+
warnings.warn(
|
36 |
+
"`max_length` is deprecated in this function, use"
|
37 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
38 |
+
UserWarning,
|
39 |
+
)
|
40 |
+
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
41 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
42 |
+
if eos_token_id is not None:
|
43 |
+
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
|
44 |
+
else:
|
45 |
+
# remove when the method is totally private
|
46 |
+
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
|
47 |
+
eos_token_id = [
|
48 |
+
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
|
49 |
+
]
|
50 |
+
eos_token_id = eos_token_id[0] if eos_token_id else None
|
51 |
+
if eos_token_id is None and self.generation_config.eos_token_id is not None:
|
52 |
+
eos_token_id = self.generation_config.eos_token_id
|
53 |
+
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
|
54 |
+
|
55 |
+
if isinstance(eos_token_id, int):
|
56 |
+
eos_token_id = [eos_token_id]
|
57 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
58 |
+
output_attentions = (
|
59 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
60 |
+
)
|
61 |
+
output_hidden_states = (
|
62 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
63 |
+
)
|
64 |
+
return_dict_in_generate = (
|
65 |
+
return_dict_in_generate
|
66 |
+
if return_dict_in_generate is not None
|
67 |
+
else self.generation_config.return_dict_in_generate
|
68 |
+
)
|
69 |
+
|
70 |
+
# init attention / hidden states / scores tuples
|
71 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
72 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
73 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
74 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
75 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
76 |
+
|
77 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
78 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
79 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
80 |
+
encoder_hidden_states = (
|
81 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
82 |
+
)
|
83 |
+
|
84 |
+
# keep track of which sequences are already finished
|
85 |
+
batch_size, cur_len = input_ids.shape
|
86 |
+
if "inputs_embeds" in model_kwargs:
|
87 |
+
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
88 |
+
this_peer_finished = False
|
89 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
90 |
+
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
|
91 |
+
|
92 |
+
max_length = stopping_criteria.max_length
|
93 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
94 |
+
# prepare model inputs
|
95 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
96 |
+
|
97 |
+
input_length = input_ids.shape[1]
|
98 |
+
|
99 |
+
# forward pass to get next token
|
100 |
+
outputs = self(
|
101 |
+
**model_inputs,
|
102 |
+
return_dict=True,
|
103 |
+
output_attentions=output_attentions,
|
104 |
+
output_hidden_states=output_hidden_states,
|
105 |
+
max_horizon_length=max_length - input_length,
|
106 |
+
)
|
107 |
+
|
108 |
+
if synced_gpus and this_peer_finished:
|
109 |
+
continue # don't waste resources running the code we don't need
|
110 |
+
|
111 |
+
next_token_logits = outputs.logits[:, -1, :]
|
112 |
+
|
113 |
+
# pre-process distribution
|
114 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
115 |
+
|
116 |
+
# Store scores, attentions and hidden_states when required
|
117 |
+
if return_dict_in_generate:
|
118 |
+
if output_scores:
|
119 |
+
scores += (next_tokens_scores,)
|
120 |
+
if output_logits:
|
121 |
+
raw_logits += (next_token_logits,)
|
122 |
+
if output_attentions:
|
123 |
+
decoder_attentions += (
|
124 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
|
125 |
+
)
|
126 |
+
if self.config.is_encoder_decoder:
|
127 |
+
cross_attentions += (outputs.cross_attentions,)
|
128 |
+
|
129 |
+
if output_hidden_states:
|
130 |
+
decoder_hidden_states += (
|
131 |
+
(outputs.decoder_hidden_states,)
|
132 |
+
if self.config.is_encoder_decoder
|
133 |
+
else (outputs.hidden_states,)
|
134 |
+
)
|
135 |
+
|
136 |
+
# argmax
|
137 |
+
# next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
138 |
+
next_tokens = next_tokens_scores
|
139 |
+
|
140 |
+
# finished sentences should have their next token be a padding token
|
141 |
+
if eos_token_id is not None:
|
142 |
+
if pad_token_id is None:
|
143 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
144 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
145 |
+
|
146 |
+
# update generated ids, model inputs, and length for next step
|
147 |
+
next_tokens = next_tokens.reshape(batch_size, -1, self.config.input_size)
|
148 |
+
horizon_length = next_tokens.shape[1]
|
149 |
+
|
150 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-2)
|
151 |
+
if streamer is not None:
|
152 |
+
streamer.put(next_tokens.cpu())
|
153 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
154 |
+
outputs,
|
155 |
+
model_kwargs,
|
156 |
+
horizon_length=horizon_length,
|
157 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
158 |
+
)
|
159 |
+
|
160 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids[..., 0], scores)
|
161 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
162 |
+
|
163 |
+
if input_ids.shape[1] > max_length:
|
164 |
+
input_ids = input_ids[:, :max_length]
|
165 |
+
|
166 |
+
if streamer is not None:
|
167 |
+
streamer.end()
|
168 |
+
|
169 |
+
if return_dict_in_generate:
|
170 |
+
if self.config.is_encoder_decoder:
|
171 |
+
return GenerateEncoderDecoderOutput(
|
172 |
+
sequences=input_ids,
|
173 |
+
scores=scores,
|
174 |
+
logits=raw_logits,
|
175 |
+
encoder_attentions=encoder_attentions,
|
176 |
+
encoder_hidden_states=encoder_hidden_states,
|
177 |
+
decoder_attentions=decoder_attentions,
|
178 |
+
cross_attentions=cross_attentions,
|
179 |
+
decoder_hidden_states=decoder_hidden_states,
|
180 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
return GenerateDecoderOnlyOutput(
|
184 |
+
sequences=input_ids,
|
185 |
+
scores=scores,
|
186 |
+
logits=raw_logits,
|
187 |
+
attentions=decoder_attentions,
|
188 |
+
hidden_states=decoder_hidden_states,
|
189 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
return input_ids
|
193 |
+
|
194 |
+
def _update_model_kwargs_for_generation(
|
195 |
+
self,
|
196 |
+
outputs: ModelOutput,
|
197 |
+
model_kwargs: Dict[str, Any],
|
198 |
+
horizon_length: int = 1,
|
199 |
+
is_encoder_decoder: bool = False,
|
200 |
+
standardize_cache_format: bool = False,
|
201 |
+
) -> Dict[str, Any]:
|
202 |
+
# update past_key_values
|
203 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
204 |
+
outputs, standardize_cache_format=standardize_cache_format
|
205 |
+
)
|
206 |
+
if getattr(outputs, "state", None) is not None:
|
207 |
+
model_kwargs["state"] = outputs.state
|
208 |
+
|
209 |
+
# update token_type_ids with last value
|
210 |
+
if "token_type_ids" in model_kwargs:
|
211 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
212 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
213 |
+
|
214 |
+
if not is_encoder_decoder:
|
215 |
+
# update attention mask
|
216 |
+
if "attention_mask" in model_kwargs:
|
217 |
+
attention_mask = model_kwargs["attention_mask"]
|
218 |
+
model_kwargs["attention_mask"] = torch.cat(
|
219 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
# update decoder attention mask
|
223 |
+
if "decoder_attention_mask" in model_kwargs:
|
224 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
225 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
226 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
227 |
+
dim=-1,
|
228 |
+
)
|
229 |
+
|
230 |
+
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
231 |
+
# model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
232 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
233 |
+
|
234 |
+
return model_kwargs
|