TimeMoE-200M / ts_generation_mixin.py
Maple728's picture
Update ts_generation_mixin.py
83dec66 verified
raw
history blame
11.4 kB
import warnings
from typing import Any, Dict, List, Optional, Union
import torch
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
from transformers.utils import ModelOutput
class TSGenerationMixin(GenerationMixin):
def _greedy_search(
self,
input_ids: torch.Tensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
output_logits: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
if len(input_ids.shape) == 2:
batch_size, cur_len = input_ids.shape
else:
raise ValueError('Input shape must be: [batch_size, seq_len]')
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
if eos_token_id is not None:
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
else:
# remove when the method is totally private
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
eos_token_id = [
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
]
eos_token_id = eos_token_id[0] if eos_token_id else None
if eos_token_id is None and self.generation_config.eos_token_id is not None:
eos_token_id = self.generation_config.eos_token_id
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
raw_logits = () if (return_dict_in_generate and output_logits) else None
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
if "inputs_embeds" in model_kwargs:
cur_len = model_kwargs["inputs_embeds"].shape[1]
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
max_length = stopping_criteria.max_length
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
input_length = input_ids.shape[1]
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
max_horizon_length=max_length - input_length,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_tokens_scores = logits_processor(input_ids, next_token_logits)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_tokens_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# argmax
# next_tokens = torch.argmax(next_tokens_scores, dim=-1)
next_tokens = next_tokens_scores
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
next_tokens = next_tokens.reshape(batch_size, -1, self.config.input_size)
horizon_length = next_tokens.shape[1]
input_ids = torch.cat([input_ids, next_tokens], dim=-2)
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
horizon_length=horizon_length,
is_encoder_decoder=self.config.is_encoder_decoder,
)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids[..., 0], scores)
this_peer_finished = unfinished_sequences.max() == 0
if input_ids.shape[1] > max_length:
input_ids = input_ids[:, :max_length]
if streamer is not None:
streamer.end()
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids.squeeze(dim=-1)
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
horizon_length: int = 1,
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
if getattr(outputs, "state", None) is not None:
model_kwargs["state"] = outputs.state
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
)
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
dim=-1,
)
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
# model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
return model_kwargs