|
import math |
|
from typing import Optional, Tuple, List, Union |
|
import warnings |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, Cache, DynamicCache, StaticCache |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast |
|
from transformers.utils import logging, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10 |
|
|
|
from .configuration_time_moe import TimeMoeConfig |
|
from .ts_generation_mixin import TSGenerationMixin |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
try: |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
except: |
|
pass |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], |
|
top_k: int, |
|
num_experts: int = None, |
|
attention_mask: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor], List[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
top_k (`int`) |
|
Selected Top k over the experts. |
|
attention_mask (`torch.Tensor`, None): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, (tuple, list)) or gate_logits[0] is None: |
|
return 0.0 |
|
|
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts)) |
|
.reshape(-1, 2, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0 |
|
) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(dim=0)) |
|
|
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class TimeMoeInputEmbedding(nn.Module): |
|
""" |
|
Use a mlp layer to embedding the time-series. |
|
""" |
|
|
|
def __init__(self, config: TimeMoeConfig): |
|
super().__init__() |
|
self.config = config |
|
self.input_size = config.input_size |
|
self.hidden_size = config.hidden_size |
|
self.emb_layer = nn.Linear(self.input_size, self.hidden_size, bias=False) |
|
self.gate_layer = nn.Linear(self.input_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
emb = self.act_fn(self.gate_layer(x)) * self.emb_layer(x) |
|
return emb |
|
|
|
|
|
|
|
class TimeMoeRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class TimeMoeRMSNorm(torch.nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class TimeMoeTemporalBlock(nn.Module): |
|
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
class TimeMoeMLP(TimeMoeTemporalBlock): |
|
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str): |
|
super().__init__(hidden_size, intermediate_size, hidden_act) |
|
|
|
def forward(self, hidden_state): |
|
return super().forward(hidden_state), None |
|
|
|
|
|
class TimeMoeSparseExpertsLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.num_experts_per_tok |
|
self.hidden_size = config.hidden_size |
|
self.num_experts = config.num_experts |
|
self.norm_topk_prob = False |
|
|
|
moe_intermediate_size = self.config.intermediate_size // self.top_k |
|
|
|
|
|
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) |
|
self.experts = nn.ModuleList( |
|
[TimeMoeTemporalBlock( |
|
hidden_size=self.config.hidden_size, |
|
intermediate_size=moe_intermediate_size, |
|
hidden_act=self.config.hidden_act, |
|
) for _ in range(self.num_experts)] |
|
) |
|
|
|
self.shared_expert = TimeMoeTemporalBlock( |
|
hidden_size=self.config.hidden_size, |
|
intermediate_size=self.config.intermediate_size, |
|
hidden_act=self.config.hidden_act, |
|
) |
|
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
""" """ |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
if self.norm_topk_prob: |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
|
|
shared_expert_output = self.shared_expert(hidden_states) |
|
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output |
|
|
|
final_hidden_states = final_hidden_states + shared_expert_output |
|
|
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
|
|
class TimeMoeAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: TimeMoeConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = TimeMoeRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class TimeMoeFlashAttention2(TimeMoeAttention): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if isinstance(past_key_value, StaticCache): |
|
raise ValueError( |
|
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " |
|
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" |
|
) |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
|
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
origin_dtype = query_states.dtype |
|
if origin_dtype not in [torch.bfloat16, torch.float16]: |
|
query_states = query_states.to(dtype=torch.bfloat16) |
|
key_states = key_states.to(dtype=torch.bfloat16) |
|
value_states = value_states.to(dtype=torch.bfloat16) |
|
|
|
|
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal |
|
) |
|
if origin_dtype not in [torch.bfloat16, torch.float16]: |
|
return attn_output.to(origin_dtype) |
|
else: |
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
TIME_MOE_ATTENTION_CLASSES = { |
|
"eager": TimeMoeAttention, |
|
'flash_attention_2': TimeMoeFlashAttention2, |
|
} |
|
|
|
|
|
class TimeMoeDecoderLayer(nn.Module): |
|
def __init__(self, config: TimeMoeConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = TIME_MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
if self.config.use_dense: |
|
self.ffn_layer = TimeMoeMLP( |
|
hidden_size=self.config.hidden_size, |
|
intermediate_size=self.config.intermediate_size, |
|
hidden_act=self.config.hidden_act, |
|
) |
|
else: |
|
self.ffn_layer = TimeMoeSparseExpertsLayer(config) |
|
self.input_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states, router_logits = self.ffn_layer(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
if not output_attentions: |
|
self_attn_weights = None |
|
|
|
if not use_cache: |
|
present_key_value = None |
|
return hidden_states, self_attn_weights, present_key_value, router_logits |
|
|
|
|
|
class TimeMoePreTrainedModel(PreTrainedModel): |
|
config_class = TimeMoeConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["TimeMoeDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, torch.nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, torch.nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class TimeMoeModel(TimeMoePreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TimeMoeDecoderLayer`] |
|
|
|
Args: |
|
config: TimeMoeConfig |
|
""" |
|
|
|
def __init__(self, config: TimeMoeConfig): |
|
super().__init__(config) |
|
self.embed_layer = TimeMoeInputEmbedding(config) |
|
self.layers = nn.ModuleList( |
|
[TimeMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
if len(input_ids.shape) == 2: |
|
input_ids.unsqueeze_(dim=-1) |
|
batch_size, seq_length, _ = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
|
|
position_ids = position_ids.view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_layer(input_ids) |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=None, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits |
|
) |
|
|
|
|
|
class TimeMoeOutputLayer(nn.Module): |
|
|
|
def __init__(self, hidden_size: int, horizon_length: int, input_size: int = 1): |
|
super().__init__() |
|
|
|
self.out_layer = nn.Linear( |
|
hidden_size, |
|
input_size * horizon_length, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
""" |
|
|
|
Args: |
|
x (torch.FloatTensor): with shape [B, seq_len, hidden_size] |
|
|
|
Returns: |
|
` torch.FloatTensor: final prediction with shape [B, seq_len, input_size] |
|
""" |
|
return self.out_layer(x) |
|
|
|
|
|
class TimeMoeForPrediction(TimeMoePreTrainedModel, TSGenerationMixin): |
|
|
|
def __init__(self, config: TimeMoeConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.apply_aux_loss = config.apply_aux_loss |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
self.router_aux_loss_factor = config.router_aux_loss_factor |
|
|
|
self.model = TimeMoeModel(config) |
|
|
|
lm_head_list = [] |
|
self.horizon_length_map = {} |
|
for i, horizon_length in enumerate(config.horizon_lengths): |
|
lm_head_list.append( |
|
TimeMoeOutputLayer( |
|
hidden_size=self.config.hidden_size, |
|
input_size=self.config.input_size, |
|
horizon_length=horizon_length, |
|
) |
|
) |
|
self.horizon_length_map[horizon_length] = i |
|
self.lm_heads = nn.ModuleList(lm_head_list) |
|
|
|
self.loss_function = torch.nn.HuberLoss(reduction='none', delta=2.0) |
|
|
|
|
|
self.post_init() |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.FloatTensor] = None, |
|
loss_masks: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
max_horizon_length: Optional[int] = None, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
predictions = None |
|
|
|
loss = None |
|
aux_loss = None |
|
if labels is not None: |
|
|
|
ar_loss = 0.0 |
|
for lm_head, horizon_length in zip(self.lm_heads, self.config.horizon_lengths): |
|
one_predictions = lm_head(hidden_states) |
|
one_loss = self.calc_ar_loss(one_predictions, labels, loss_masks, horizon_length) |
|
ar_loss += one_loss |
|
if predictions is None: |
|
predictions = one_predictions |
|
loss = ar_loss / len(self.config.horizon_lengths) |
|
|
|
if self.apply_aux_loss: |
|
router_logits = outputs.router_logits if return_dict else outputs[-1] |
|
|
|
temporal_aux_loss = load_balancing_loss_func( |
|
router_logits, |
|
top_k=self.num_experts_per_tok, |
|
num_experts=self.config.num_experts, |
|
attention_mask=attention_mask |
|
) |
|
loss += self.router_aux_loss_factor * temporal_aux_loss.to(loss.device) |
|
else: |
|
if max_horizon_length is None: |
|
horizon_length = self.config.horizon_lengths[0] |
|
max_horizon_length = horizon_length |
|
else: |
|
horizon_length = self.config.horizon_lengths[0] |
|
for h in self.config.horizon_lengths[1:]: |
|
if h > max_horizon_length: |
|
break |
|
else: |
|
horizon_length = h |
|
lm_head = self.lm_heads[self.horizon_length_map[horizon_length]] |
|
predictions = lm_head(hidden_states) |
|
if horizon_length > max_horizon_length: |
|
predictions = predictions[:, :, : self.config.input_size * max_horizon_length] |
|
|
|
if not return_dict: |
|
output = (predictions,) + outputs[1:] |
|
return (loss, aux_loss) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=predictions, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def calc_ar_loss(self, predictions, labels, loss_masks, horizon_length): |
|
if len(labels.shape) == 2: |
|
labels.unsqueeze_(dim=-1) |
|
|
|
labels = labels.to(predictions.device) |
|
if loss_masks is not None and len(loss_masks.shape) == 2: |
|
loss_masks.unsqueeze_(dim=-1) |
|
|
|
loss_masks = loss_masks.to(predictions.device) |
|
|
|
if horizon_length > 1: |
|
batch_size, seq_len, output_size = predictions.shape |
|
shift_predictions = predictions.view(batch_size, seq_len, horizon_length, -1) |
|
|
|
|
|
|
|
labels = F.pad(labels.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0) |
|
|
|
|
|
shift_labels = labels.unfold(dimension=-1, size=horizon_length, step=1) |
|
shift_labels = shift_labels.permute(0, 2, 3, 1) |
|
|
|
if loss_masks is not None: |
|
|
|
loss_masks = F.pad(loss_masks.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0) |
|
|
|
loss_masks = loss_masks.unfold(dimension=-1, size=horizon_length, step=1) |
|
loss_masks = loss_masks.permute(0, 2, 3, 1) |
|
|
|
else: |
|
shift_predictions = predictions |
|
shift_labels = labels |
|
|
|
|
|
losses = self.loss_function(shift_predictions, shift_labels) |
|
|
|
if loss_masks is not None: |
|
losses = losses * loss_masks |
|
loss = losses.sum() / loss_masks.sum() |
|
else: |
|
loss = torch.mean(losses) |
|
|
|
return loss |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
if isinstance(past_key_values, DynamicCache): |
|
past_length = past_key_values.seen_tokens |
|
else: |
|
past_length = cache_length |
|
|
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
logger.info('Use input_embedding') |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|