ManishThota commited on
Commit
6e93497
1 Parent(s): de561d0

Upload ImpForCausalLM

Browse files
Files changed (5) hide show
  1. config.json +3 -3
  2. configuration_imp.py +183 -0
  3. modeling_imp.py +1262 -0
  4. pytorch_model.bin +3 -0
  5. vision_encoder.py +593 -0
config.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
- "_name_or_path": "MILVLG/imp-v1-3b",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
  "ImpForCausalLM"
6
  ],
7
  "attn_pdrop": 0.0,
8
  "auto_map": {
9
- "AutoConfig": "MILVLG/imp-v1-3b--configuration_imp.ImpConfig",
10
- "AutoModelForCausalLM": "MILVLG/imp-v1-3b--modeling_imp.ImpForCausalLM"
11
  },
12
  "embd_pdrop": 0.0,
13
  "eos_token_id": 50295,
 
1
  {
2
+ "_name_or_path": "/workspace/imp/sparrow",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
  "ImpForCausalLM"
6
  ],
7
  "attn_pdrop": 0.0,
8
  "auto_map": {
9
+ "AutoConfig": "configuration_imp.ImpConfig",
10
+ "AutoModelForCausalLM": "modeling_imp.ImpForCausalLM"
11
  },
12
  "embd_pdrop": 0.0,
13
  "eos_token_id": 50295,
configuration_imp.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) MILVLG team.
2
+ # Licensed under the Apache 2.0 license.
3
+ #
4
+ # Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
5
+ # SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
6
+ # and Llava (https://github.com/haotian-liu/LLaVA), and modified by
7
+ # Zhenwei Shao ([email protected]) @ MILVLG. We thank them for their great works.
8
+ #
9
+ # We keep their original copyright statements as follows, which should be inherited:
10
+ # ------------------------------- Phi-2 ---------------------------------------------
11
+ # Copyright (c) Microsoft Corporation.
12
+ # Licensed under the MIT license.
13
+ # https://huggingface.co/google/siglip-so400m-patch14-384
14
+ #
15
+ # Copyright (c) 2022, Tri Dao, [email protected].
16
+ # Licensed under the BSD 3-Clause License.
17
+ # ------------------------------- SigLIP --------------------------------------------
18
+ # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
19
+ #
20
+ # Licensed under the Apache License, Version 2.0 (the "License");
21
+ # you may not use this file except in compliance with the License.
22
+ # You may obtain a copy of the License at
23
+ #
24
+ # http://www.apache.org/licenses/LICENSE-2.0
25
+ #
26
+ # Unless required by applicable law or agreed to in writing, software
27
+ # distributed under the License is distributed on an "AS IS" BASIS,
28
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
29
+ # See the License for the specific language governing permissions and
30
+ # limitations under the License.
31
+ # ------------------------------- Llava ---------------------------------------------
32
+ # Copyright 2023 Haotian Liu
33
+ #
34
+ # Licensed under the Apache License, Version 2.0 (the "License");
35
+ # you may not use this file except in compliance with the License.
36
+ # You may obtain a copy of the License at
37
+ #
38
+ # http://www.apache.org/licenses/LICENSE-2.0
39
+ #
40
+ # Unless required by applicable law or agreed to in writing, software
41
+ # distributed under the License is distributed on an "AS IS" BASIS,
42
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
43
+ # See the License for the specific language governing permissions and
44
+ # limitations under the License.
45
+ # -----------------------------------------------------------------------------------
46
+
47
+
48
+ import os
49
+ import math
50
+ from typing import Optional, Union
51
+
52
+ from transformers import PretrainedConfig
53
+ from transformers.utils import logging
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+
58
+ class PhiConfig(PretrainedConfig):
59
+ """Phi configuration."""
60
+
61
+ model_type = "phi-msft"
62
+ attribute_map = {
63
+ "max_position_embeddings": "n_positions",
64
+ "hidden_size": "n_embd",
65
+ "num_attention_heads": "n_head",
66
+ "num_hidden_layers": "n_layer",
67
+ }
68
+
69
+ def __init__(
70
+ self,
71
+ vocab_size: int = 50304,
72
+ n_positions: int = 2048,
73
+ n_embd: int = 1024,
74
+ n_layer: int = 20,
75
+ n_inner: Optional[int] = None,
76
+ n_head: int = 16,
77
+ n_head_kv: Optional[int] = None,
78
+ rotary_dim: Optional[int] = 32,
79
+ activation_function: Optional[str] = "gelu_new",
80
+ flash_attn: bool = False,
81
+ flash_rotary: bool = False,
82
+ fused_dense: bool = False,
83
+ attn_pdrop: float = 0.0,
84
+ embd_pdrop: float = 0.0,
85
+ resid_pdrop: float = 0.0,
86
+ layer_norm_epsilon: float = 1e-5,
87
+ initializer_range: float = 0.02,
88
+ tie_word_embeddings: bool = False,
89
+ pad_vocab_size_multiple: int = 64,
90
+ **kwargs
91
+ ) -> None:
92
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
93
+ self.n_positions = n_positions
94
+ self.n_embd = n_embd
95
+ self.n_layer = n_layer
96
+ self.n_inner = n_inner
97
+ self.n_head = n_head
98
+ self.n_head_kv = n_head_kv
99
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
100
+ self.activation_function = activation_function
101
+ self.flash_attn = flash_attn
102
+ self.flash_rotary = flash_rotary
103
+ self.fused_dense = fused_dense
104
+ self.attn_pdrop = attn_pdrop
105
+ self.embd_pdrop = embd_pdrop
106
+ self.resid_pdrop = resid_pdrop
107
+ self.layer_norm_epsilon = layer_norm_epsilon
108
+ self.initializer_range = initializer_range
109
+
110
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
111
+
112
+
113
+
114
+ class SiglipVisionConfig(PretrainedConfig):
115
+
116
+ model_type = "siglip_vision_model"
117
+
118
+ def __init__(
119
+ self,
120
+ hidden_size=768,
121
+ intermediate_size=3072,
122
+ num_hidden_layers=12,
123
+ num_attention_heads=12,
124
+ num_channels=3,
125
+ image_size=224,
126
+ patch_size=16,
127
+ hidden_act="gelu_pytorch_tanh",
128
+ layer_norm_eps=1e-6,
129
+ attention_dropout=0.0,
130
+ **kwargs,
131
+ ):
132
+ super().__init__(**kwargs)
133
+
134
+ self.hidden_size = hidden_size
135
+ self.intermediate_size = intermediate_size
136
+ self.num_hidden_layers = num_hidden_layers
137
+ self.num_attention_heads = num_attention_heads
138
+ self.num_channels = num_channels
139
+ self.patch_size = patch_size
140
+ self.image_size = image_size
141
+ self.attention_dropout = attention_dropout
142
+ self.layer_norm_eps = layer_norm_eps
143
+ self.hidden_act = hidden_act
144
+
145
+ @classmethod
146
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
147
+ cls._set_token_in_kwargs(kwargs)
148
+
149
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
150
+
151
+ # get the vision config dict if we are loading from SiglipConfig
152
+ if config_dict.get("model_type") == "siglip":
153
+ config_dict = config_dict["vision_config"]
154
+
155
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
156
+ logger.warning(
157
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
158
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
159
+ )
160
+
161
+ return cls.from_dict(config_dict, **kwargs)
162
+
163
+
164
+ class ImpConfig(PhiConfig):
165
+ model_type = "imp"
166
+
167
+ def __init__(self, **kwargs):
168
+ super().__init__(**kwargs)
169
+ self.image_token_index = getattr(self, "image_token_index", 50296)
170
+ self.image_token = getattr(self, "image_token", "<image>")
171
+
172
+ if not hasattr(self, "vision_tower_config") and hasattr(self, "mm_vision_tower"):
173
+ vision_tower_config = SiglipVisionConfig.from_pretrained(self.mm_vision_tower)
174
+ self.vision_tower_config = vision_tower_config.to_diff_dict()
175
+
176
+ @property
177
+ def vision_tower_cfg(self):
178
+ cfg = SiglipVisionConfig.from_dict(self.vision_tower_config)
179
+ # imp-v1 only supports `patch` feature for now w/o cls token
180
+ # cfg.mm_vision_select_feature = self.mm_vision_select_feature
181
+ cfg.mm_vision_select_layer = self.mm_vision_select_layer
182
+ cfg.mm_vision_tower = self.mm_vision_tower
183
+ return cfg
modeling_imp.py ADDED
@@ -0,0 +1,1262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) MILVLG team.
2
+ # Licensed under the Apache 2.0 license.
3
+ #
4
+ # Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
5
+ # SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
6
+ # and Llava (https://github.com/haotian-liu/LLaVA), and modified by
7
+ # Zhenwei Shao ([email protected]) @ MILVLG. We thank them for their great works.
8
+ # And their original licenses and copyright should be inherited (see the statements
9
+ # in `configuration_imp.py` for more details).
10
+
11
+
12
+ # Be careful: The way how `past_key_values.seqlen_offset` is updated is modified from
13
+ # the implementation of original Phi-2. See the comments below for details.
14
+
15
+ from __future__ import annotations
16
+ import os
17
+ import math
18
+ import re
19
+ from dataclasses import dataclass, field
20
+ from typing import Any, Dict, Optional, Tuple, Union, List
21
+ from abc import ABC, abstractmethod
22
+
23
+ import torch
24
+ import torch.nn as nn
25
+ from einops import rearrange, repeat
26
+ from transformers import (
27
+ PretrainedConfig,
28
+ PreTrainedModel,
29
+ AutoConfig,
30
+ AutoModelForCausalLM
31
+ )
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_outputs import CausalLMOutputWithPast
34
+ import sys
35
+ from .configuration_imp import PhiConfig, ImpConfig
36
+ from .vision_encoder import VisionTower
37
+
38
+ try:
39
+ from flash_attn.bert_padding import pad_input, unpad_input
40
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
41
+ from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
42
+ from flash_attn.ops.fused_dense import FusedDense
43
+ except:
44
+ pad_input, unpad_input = None, None
45
+ FlashRotaryEmbedding = None
46
+ FlashSelfAttention, FlashCrossAttention = None, None
47
+ FusedDense = None
48
+
49
+
50
+ @dataclass
51
+ class InferenceParams:
52
+ """Inference parameters passed to model to efficiently calculate
53
+ and store context during inference.
54
+
55
+ Reference:
56
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
57
+
58
+ Args:
59
+ max_seqlen: Maximum sequence length.
60
+ max_batch_size: Maximum batch size.
61
+ seqlen_offset: Sequence length offset.
62
+ batch_size_offset: Batch size offset.
63
+ key_value_memory_dict: Key value memory dictionary.
64
+ lengths_per_sample: Lengths per sample.
65
+
66
+ """
67
+
68
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
69
+
70
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
71
+
72
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
73
+
74
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
75
+
76
+ key_value_memory_dict: Dict[str, Any] = field(
77
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
78
+ )
79
+
80
+ lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
81
+
82
+
83
+ class Embedding(nn.Module):
84
+ """Token embedding with dropout."""
85
+
86
+ def __init__(self, config: PretrainedConfig) -> None:
87
+ super().__init__()
88
+
89
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
90
+ self.drop = nn.Dropout(config.embd_pdrop)
91
+
92
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
93
+ input_shape = input_ids.size()
94
+ input_ids = input_ids.view(-1, input_shape[-1])
95
+
96
+ hidden_states = self.wte(input_ids)
97
+ hidden_states = self.drop(hidden_states)
98
+
99
+ return hidden_states
100
+
101
+
102
+
103
+ def _apply_rotary_emb(
104
+ x: torch.FloatTensor,
105
+ cos: torch.FloatTensor,
106
+ sin: torch.FloatTensor,
107
+ ) -> torch.FloatTensor:
108
+ _, seqlen, _, _ = x.shape
109
+ _, rotary_dim = cos.shape
110
+ rotary_dim *= 2
111
+
112
+ x_rot = x[:, :, :, :rotary_dim]
113
+ x_pass = x[:, :, :, rotary_dim:]
114
+
115
+ x1, x2 = x_rot.chunk(2, dim=-1)
116
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
117
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
118
+
119
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
120
+
121
+ return torch.cat([x_rot, x_pass], axis=-1)
122
+
123
+
124
+ def _apply_rotary_emb_kv(
125
+ kv: torch.FloatTensor,
126
+ cos: torch.FloatTensor,
127
+ sin: torch.FloatTensor,
128
+ cos_k: Optional[torch.FloatTensor] = None,
129
+ sin_k: Optional[torch.FloatTensor] = None,
130
+ ) -> torch.FloatTensor:
131
+ _, seqlen, _, _, _ = kv.shape
132
+ _, rotary_dim = cos.shape
133
+ rotary_dim *= 2
134
+
135
+ k_rot = kv[:, :, 0, :, :rotary_dim]
136
+ k_pass = kv[:, :, 0, :, rotary_dim:]
137
+
138
+ k1, k2 = k_rot.chunk(2, dim=-1)
139
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
140
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
141
+
142
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
143
+
144
+ return torch.cat(
145
+ [
146
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
147
+ kv[:, :, 1:2, :, :],
148
+ ],
149
+ axis=2,
150
+ )
151
+
152
+
153
+ def _apply_rotary_emb_qkv(
154
+ qkv: torch.FloatTensor,
155
+ cos: torch.FloatTensor,
156
+ sin: torch.FloatTensor,
157
+ cos_k: Optional[torch.FloatTensor] = None,
158
+ sin_k: Optional[torch.FloatTensor] = None,
159
+ ) -> torch.FloatTensor:
160
+ _, seqlen, _, _, _ = qkv.shape
161
+ _, rotary_dim = cos.shape
162
+ rotary_dim *= 2
163
+
164
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
165
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
166
+
167
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
168
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
169
+
170
+ q1, q2 = q_rot.chunk(2, dim=-1)
171
+ k1, k2 = k_rot.chunk(2, dim=-1)
172
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
173
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
174
+
175
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
176
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
177
+
178
+ return torch.cat(
179
+ [
180
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
181
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
182
+ qkv[:, :, 2:3, :, :],
183
+ ],
184
+ axis=2,
185
+ )
186
+
187
+
188
+ class RotaryEmbedding(nn.Module):
189
+ """Rotary positional embedding (RoPE).
190
+
191
+ Reference:
192
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
193
+ https://arxiv.org/pdf/2104.09864.pdf.
194
+
195
+ """
196
+
197
+ def __init__(
198
+ self,
199
+ dim: int,
200
+ base: int = 10000,
201
+ scale_base: Optional[float] = None,
202
+ pos_idx_in_fp32: bool = True,
203
+ max_position_embeddings: int = 2048,
204
+ device: Optional[str] = None,
205
+ **kwargs,
206
+ ) -> None:
207
+ super().__init__()
208
+
209
+ if scale_base is not None:
210
+ raise NotImplementedError
211
+
212
+ self.dim = dim
213
+ self.base = float(base)
214
+ self.scale_base = scale_base
215
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
216
+ self.max_position_embeddings = max_position_embeddings
217
+ self.device = device
218
+
219
+ # Generate and save the inverse frequency buffer (non-trainable)
220
+ inv_freq = self._compute_inv_freq(device)
221
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
222
+
223
+ # Generate and save the scale buffer (non-trainable)
224
+ scale = (
225
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
226
+ if scale_base is not None
227
+ else None
228
+ )
229
+ self.register_buffer("scale", scale, persistent=False)
230
+
231
+ # Initialize cached attributes since ONNX can't rely on dynamic initialization
232
+ self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
233
+
234
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
235
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
236
+
237
+ def _update_cos_sin_cache(
238
+ self,
239
+ seqlen: int,
240
+ device: Optional[str] = None,
241
+ dtype: Optional[torch.dtype] = None,
242
+ ) -> None:
243
+ self._seq_len_cached = seqlen
244
+
245
+ # fp32 is preferred since the output of `torch.arange` can be quite large
246
+ # and bf16 would lose a lot of precision
247
+ if self.pos_idx_in_fp32:
248
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
249
+ if self.inv_freq.dtype != torch.float32:
250
+ inv_freq = self._compute_inv_freq(device=device)
251
+ else:
252
+ inv_freq = self.inv_freq
253
+ else:
254
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
255
+ inv_freq = self.inv_freq
256
+
257
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
258
+ freqs = torch.outer(t, inv_freq)
259
+ if self.scale is None:
260
+ self._cos_cached = torch.cos(freqs).to(dtype)
261
+ self._sin_cached = torch.sin(freqs).to(dtype)
262
+ else:
263
+ power = (
264
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
265
+ ) / self.scale_base
266
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
267
+
268
+ # Force the scale multiplication to happen in fp32
269
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
270
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
271
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
272
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
273
+
274
+ def forward(
275
+ self,
276
+ qkv: torch.Tensor,
277
+ kv: Optional[torch.Tensor] = None,
278
+ seqlen_offset: int = 0,
279
+ **kwargs,
280
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
281
+ if (
282
+ self._seq_len_cached < qkv.shape[1] + seqlen_offset
283
+ or self._cos_cached.device != qkv.device
284
+ or self._cos_cached.dtype != qkv.dtype
285
+ or (self.training and self._cos_cached.is_inference())
286
+ ):
287
+ self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
288
+
289
+ if kv is None:
290
+ return _apply_rotary_emb_qkv(
291
+ qkv,
292
+ self._cos_cached[seqlen_offset:],
293
+ self._sin_cached[seqlen_offset:],
294
+ )
295
+ else:
296
+ q = _apply_rotary_emb(
297
+ qkv,
298
+ self._cos_cached[seqlen_offset:],
299
+ self._sin_cached[seqlen_offset:],
300
+ )
301
+ kv = _apply_rotary_emb_kv(
302
+ kv,
303
+ self._cos_cached[seqlen_offset:],
304
+ self._sin_cached[seqlen_offset:],
305
+ )
306
+
307
+ return q, kv
308
+
309
+
310
+ class MLP(nn.Module):
311
+ """Multi-Layer Perceptron.
312
+
313
+ Reference:
314
+ Attention Is All You Need.
315
+ https://arxiv.org/pdf/1706.03762.pdf.
316
+
317
+ """
318
+
319
+ def __init__(
320
+ self,
321
+ config: PretrainedConfig,
322
+ n_inner: Optional[int] = None,
323
+ act_fn: Optional[str] = None,
324
+ ) -> None:
325
+ super().__init__()
326
+
327
+ act_fn = config.activation_function if act_fn is None else act_fn
328
+
329
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
330
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
331
+
332
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
333
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
334
+ self.act = ACT2FN[act_fn]
335
+
336
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
337
+ hidden_states = self.fc1(hidden_states)
338
+ hidden_states = self.act(hidden_states)
339
+ hidden_states = self.fc2(hidden_states)
340
+
341
+ return hidden_states
342
+
343
+
344
+ class SelfAttention(nn.Module):
345
+ """Self-attention layer (compatible with PyTorch).
346
+
347
+ Reference:
348
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
349
+
350
+ """
351
+
352
+ def __init__(
353
+ self,
354
+ causal: bool = True,
355
+ softmax_scale: Optional[float] = None,
356
+ attention_dropout: float = 0.0,
357
+ ) -> None:
358
+ super().__init__()
359
+
360
+ self.causal = causal
361
+ self.softmax_scale = softmax_scale
362
+ self.drop = nn.Dropout(attention_dropout)
363
+
364
+ @torch.autocast("cpu", enabled=False)
365
+ @torch.autocast("cuda", enabled=False)
366
+ def forward(
367
+ self,
368
+ qkv: torch.FloatTensor,
369
+ causal: bool = None,
370
+ key_padding_mask: Optional[torch.BoolTensor] = None,
371
+ **kwargs,
372
+ ) -> torch.FloatTensor:
373
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
374
+ q, k, v = qkv.unbind(dim=2)
375
+
376
+ q = q.to(torch.float32)
377
+ k = k.to(torch.float32)
378
+
379
+ causal = self.causal if causal is None else causal
380
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
381
+
382
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
383
+ # using float16, which might lead to overflow
384
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
385
+
386
+ if key_padding_mask is not None:
387
+ padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
388
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
389
+
390
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
391
+
392
+ if causal:
393
+ causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
394
+ scores = scores + causal_mask.to(dtype=scores.dtype)
395
+
396
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
397
+ attention = self.drop(attention)
398
+
399
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
400
+
401
+ return output
402
+
403
+
404
+ class CrossAttention(nn.Module):
405
+ """Cross-attention layer (compatible with PyTorch).
406
+
407
+ Reference:
408
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
409
+
410
+ """
411
+
412
+ def __init__(
413
+ self,
414
+ causal: bool = True,
415
+ softmax_scale: Optional[float] = None,
416
+ attention_dropout: float = 0.0,
417
+ ) -> None:
418
+ super().__init__()
419
+
420
+ self.causal = causal
421
+ self.softmax_scale = softmax_scale
422
+ self.drop = nn.Dropout(attention_dropout)
423
+
424
+ @torch.autocast("cpu", enabled=False)
425
+ @torch.autocast("cuda", enabled=False)
426
+ def forward(
427
+ self,
428
+ q: torch.FloatTensor,
429
+ kv: torch.FloatTensor,
430
+ causal: bool = None,
431
+ key_padding_mask: Optional[torch.BoolTensor] = None,
432
+ **kwargs,
433
+ ) -> torch.FloatTensor:
434
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
435
+ seqlen_k = kv.shape[1]
436
+
437
+ if kv.shape[3] != q.shape[2]:
438
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
439
+ k, v = kv.unbind(dim=2)
440
+
441
+ q = q.to(torch.float32)
442
+ k = k.to(torch.float32)
443
+
444
+ causal = self.causal if causal is None else causal
445
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
446
+
447
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
448
+ # using float16, which might lead to overflow
449
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
450
+
451
+ if key_padding_mask is not None:
452
+ padding_mask = torch.full(
453
+ (batch_size, seqlen_k),
454
+ -10000.0,
455
+ dtype=scores.dtype,
456
+ device=scores.device,
457
+ )
458
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
459
+
460
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
461
+
462
+ if causal:
463
+ rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
464
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
465
+ causal_mask = cols > rows + seqlen_k - seqlen_q
466
+
467
+ scores = scores.masked_fill(causal_mask, -10000.0)
468
+
469
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
470
+ attention = self.drop(attention)
471
+
472
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
473
+
474
+ return output
475
+
476
+
477
+ def _find_mha_dims(
478
+ config: PretrainedConfig,
479
+ n_head: Optional[int] = None,
480
+ n_head_kv: Optional[int] = None,
481
+ head_dim: Optional[int] = None,
482
+ ) -> Tuple[int, int]:
483
+ if n_head is None and head_dim is None:
484
+ head_dim = config.n_embd // config.n_head
485
+ n_head = config.n_head
486
+ elif n_head is None or head_dim is None:
487
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
488
+
489
+ if n_head_kv is None:
490
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
491
+
492
+ return n_head, n_head_kv, head_dim
493
+
494
+
495
+ def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
496
+ num_heads, head_dim = kv.shape[-2:]
497
+
498
+ if layer_idx not in inference_params.key_value_memory_dict:
499
+ inference_params.key_value_memory_dict[layer_idx] = torch.empty(
500
+ inference_params.max_batch_size,
501
+ inference_params.max_seqlen,
502
+ 2,
503
+ num_heads,
504
+ head_dim,
505
+ dtype=kv.dtype,
506
+ device=kv.device,
507
+ )
508
+
509
+ batch_start = inference_params.batch_size_offset
510
+ batch_end = batch_start + kv.shape[0]
511
+
512
+ sequence_start = inference_params.seqlen_offset
513
+ sequence_end = sequence_start + kv.shape[1]
514
+
515
+ # When the current sequence length is equal to or larger than the maximum sequence length,
516
+ # we need to concatenate the current `kv` with the cached `kv` to expand its length
517
+ if sequence_end >= inference_params.max_seqlen:
518
+ inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
519
+
520
+ inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
521
+ kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
522
+
523
+ return kv
524
+
525
+
526
+ class MHA(nn.Module):
527
+ """Multi-head attention layer."""
528
+
529
+ def __init__(
530
+ self,
531
+ config: PretrainedConfig,
532
+ dtype: Optional[torch.dtype] = None,
533
+ device: Optional[str] = None,
534
+ rotary_dim: Optional[int] = None,
535
+ rotary_base: float = 10000.0,
536
+ rotary_scale_base: Optional[float] = None,
537
+ n_head: Optional[int] = None,
538
+ n_head_kv: Optional[int] = None,
539
+ head_dim: Optional[int] = None,
540
+ bias: bool = True,
541
+ causal: bool = True,
542
+ softmax_scale: Optional[float] = None,
543
+ layer_idx: Optional[int] = None,
544
+ return_residual: bool = False,
545
+ checkpointing: bool = False,
546
+ ) -> None:
547
+ super().__init__()
548
+
549
+ # Rotary embedding
550
+ self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
551
+ if self.rotary_dim > 0:
552
+ rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
553
+ if rotary_cls is None:
554
+ rotary_cls = RotaryEmbedding
555
+
556
+ rotary_kwargs = {}
557
+ if rotary_cls is RotaryEmbedding:
558
+ rotary_kwargs["max_position_embeddings"] = config.n_positions
559
+
560
+ self.rotary_emb = rotary_cls(
561
+ self.rotary_dim,
562
+ base=rotary_base,
563
+ scale_base=rotary_scale_base,
564
+ device=device,
565
+ **rotary_kwargs,
566
+ )
567
+
568
+ # MLP
569
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
570
+ config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
571
+ )
572
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
573
+ hidden_size = config.n_embd
574
+
575
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
576
+ if linear_cls is None:
577
+ linear_cls = nn.Linear
578
+
579
+ self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
580
+ self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
581
+
582
+ # Attention
583
+ attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
584
+ if attn_cls is None:
585
+ attn_cls = SelfAttention
586
+
587
+ cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
588
+ if cross_attn_cls is None:
589
+ cross_attn_cls = CrossAttention
590
+
591
+ self.inner_attn = attn_cls(
592
+ causal=causal,
593
+ softmax_scale=softmax_scale,
594
+ attention_dropout=config.attn_pdrop,
595
+ )
596
+ self.inner_cross_attn = cross_attn_cls(
597
+ causal=causal,
598
+ softmax_scale=softmax_scale,
599
+ attention_dropout=config.attn_pdrop,
600
+ )
601
+
602
+ self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
603
+ self.layer_idx = layer_idx
604
+ self.return_residual = return_residual
605
+ self.checkpointing = checkpointing
606
+
607
+ def _forward_self_attn(
608
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
609
+ ) -> torch.FloatTensor:
610
+ qkv = self.Wqkv(x)
611
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
612
+
613
+ if self.rotary_dim > 0:
614
+ qkv = self.rotary_emb(qkv)
615
+
616
+ if self.flash_attn:
617
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
618
+
619
+ cu_seqlens, max_seqlen = None, None
620
+ if key_padding_mask is not None:
621
+ # If `key_padding_mask` is supplied, we need to unpad the input and retrieve
622
+ # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
623
+ qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
624
+
625
+ if self.checkpointing:
626
+ attn_output = torch.utils.checkpoint.checkpoint(
627
+ self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
628
+ )
629
+ else:
630
+ attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
631
+
632
+ # If `key_padding_mask` is supplied, we need to pad the output back to the original shape
633
+ return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
634
+
635
+ if self.checkpointing:
636
+ return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
637
+
638
+ return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
639
+
640
+ def _forward_cross_attn(
641
+ self,
642
+ x: torch.FloatTensor,
643
+ past_key_values: Optional[InferenceParams],
644
+ key_padding_mask: Optional[torch.BoolTensor],
645
+ ) -> torch.FloatTensor:
646
+ batch_size = x.shape[0]
647
+
648
+ qkv = self.Wqkv(x)
649
+
650
+ q = qkv[..., : self.n_head * self.head_dim]
651
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
652
+
653
+ kv = qkv[..., self.n_head * self.head_dim :]
654
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
655
+
656
+ seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
657
+ causal = None if seqlen_offset == 0 else False
658
+ if self.rotary_dim > 0:
659
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
660
+
661
+ if past_key_values is not None:
662
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
663
+
664
+ if self.flash_attn:
665
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
666
+ seqlen_k = kv.shape[1]
667
+
668
+ cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
669
+ None,
670
+ None,
671
+ None,
672
+ None,
673
+ )
674
+ if key_padding_mask is not None:
675
+ kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
676
+
677
+ if seqlen_q == 1:
678
+ key_padding_mask = torch.ones(batch_size, 1, device=q.device)
679
+ elif seqlen_q != seqlen_k:
680
+ key_padding_mask = key_padding_mask[:, -seqlen_q:]
681
+
682
+ q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
683
+
684
+ if self.checkpointing:
685
+ attn_output = torch.utils.checkpoint.checkpoint(
686
+ self.inner_cross_attn,
687
+ q,
688
+ kv,
689
+ causal=causal,
690
+ cu_seqlens=cu_seqlens_q,
691
+ max_seqlen=max_seqlen_q,
692
+ cu_seqlens_k=cu_seqlens_k,
693
+ max_seqlen_k=max_seqlen_k,
694
+ )
695
+ else:
696
+ attn_output = self.inner_cross_attn(
697
+ q,
698
+ kv,
699
+ causal=causal,
700
+ cu_seqlens=cu_seqlens_q,
701
+ max_seqlen=max_seqlen_q,
702
+ cu_seqlens_k=cu_seqlens_k,
703
+ max_seqlen_k=max_seqlen_k,
704
+ )
705
+
706
+ return (
707
+ pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
708
+ if key_padding_mask is not None
709
+ else attn_output
710
+ )
711
+
712
+ if self.checkpointing:
713
+ return torch.utils.checkpoint.checkpoint(
714
+ self.inner_cross_attn,
715
+ q,
716
+ kv,
717
+ key_padding_mask=key_padding_mask,
718
+ causal=causal,
719
+ )
720
+
721
+ return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
722
+
723
+ def forward(
724
+ self,
725
+ x: torch.FloatTensor,
726
+ past_key_values: Optional[InferenceParams] = None,
727
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
728
+ **kwargs,
729
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
730
+ if attention_mask is not None:
731
+ attention_mask = attention_mask.bool()
732
+ else:
733
+ attention_mask = None
734
+
735
+ # MHA
736
+ if self.n_head == self.n_head_kv:
737
+ if past_key_values is None:
738
+ # If `past_key_values` are not supplied, we run self-attention
739
+ attn_output = self._forward_self_attn(x, attention_mask)
740
+ else:
741
+ # If `past_key_values` are supplied, it means that we might have cached values and
742
+ # could take advantage of cross-attention
743
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
744
+ # MQA / GQA
745
+ else:
746
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
747
+ # because `q` and `kv` lengths might be different
748
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
749
+
750
+ output = rearrange(attn_output, "... h d -> ... (h d)")
751
+ output = self.out_proj(output)
752
+
753
+ return output if not self.return_residual else (output, x)
754
+
755
+
756
+ class ParallelBlock(nn.Module):
757
+ """Parallel block.
758
+
759
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
760
+
761
+ """
762
+
763
+ def __init__(
764
+ self,
765
+ config: PretrainedConfig,
766
+ block_idx: Optional[int] = None,
767
+ ) -> None:
768
+ super().__init__()
769
+
770
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
771
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
772
+ self.block_idx = block_idx
773
+
774
+ self.mixer = MHA(config, layer_idx=block_idx)
775
+ self.mlp = MLP(config)
776
+
777
+ def forward(
778
+ self,
779
+ hidden_states: torch.FloatTensor,
780
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
781
+ attention_mask: Optional[torch.BoolTensor] = None,
782
+ **kwargs,
783
+ ) -> torch.FloatTensor:
784
+ residual = hidden_states
785
+ hidden_states = self.ln(hidden_states)
786
+
787
+ attn_outputs = self.mixer(
788
+ hidden_states,
789
+ past_key_values=past_key_values,
790
+ attention_mask=attention_mask,
791
+ )
792
+ if isinstance(attn_outputs, tuple):
793
+ attn_outputs = attn_outputs[0]
794
+
795
+ attn_outputs = self.resid_dropout(attn_outputs)
796
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
797
+
798
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
799
+
800
+ return hidden_states
801
+
802
+
803
+ class CausalLMHead(nn.Module):
804
+ """Causal Language Modeling head.
805
+
806
+ Reference:
807
+ Improving Language Understanding by Generative Pre-Training.
808
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
809
+
810
+ """
811
+
812
+ def __init__(self, config: PretrainedConfig) -> None:
813
+ super().__init__()
814
+
815
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
816
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
817
+
818
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
819
+ hidden_states = self.ln(hidden_states)
820
+ logits = self.linear(hidden_states).to(torch.float32)
821
+
822
+ return logits
823
+
824
+
825
+ class PhiPreTrainedModel(PreTrainedModel):
826
+ """Phi pre-trained model."""
827
+
828
+ config_class = PhiConfig
829
+ base_model_prefix = "transformer"
830
+ supports_gradient_checkpointing = True
831
+ _no_split_modules = ["ParallelBlock", "CLIPEncoderLayer", "Block"]
832
+
833
+ def __init__(self, *inputs, **kwargs) -> None:
834
+ super().__init__(*inputs, **kwargs)
835
+
836
+ def _init_weights(self, module: nn.Module) -> None:
837
+ if isinstance(module, (nn.Linear,)):
838
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
839
+ if module.bias is not None:
840
+ module.bias.data.zero_()
841
+ elif isinstance(module, nn.Embedding):
842
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
843
+ if module.padding_idx is not None:
844
+ module.weight.data[module.padding_idx].zero_()
845
+ elif isinstance(module, nn.LayerNorm):
846
+ if module.bias is not None:
847
+ module.bias.data.zero_()
848
+ module.weight.data.fill_(1.0)
849
+
850
+ def prepare_inputs_for_generation(
851
+ self,
852
+ input_ids: torch.LongTensor,
853
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
854
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
855
+ **kwargs,
856
+ ) -> Dict[str, Any]:
857
+ if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
858
+ past_key_values = InferenceParams(
859
+ max_seqlen=self.config.n_positions,
860
+ max_batch_size=input_ids.shape[0],
861
+ seqlen_offset=0,
862
+ batch_size_offset=0,
863
+ key_value_memory_dict={},
864
+ lengths_per_sample=None,
865
+ )
866
+ else:
867
+ # ======================================================================
868
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
869
+ # inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...]
870
+ # past_key_values.seqlen_offset = input_ids.shape[1] - 1
871
+ # ======================================================================
872
+ # I change the way of updating `past_key_values.seqlen_offset` to make the inference of imp work.
873
+ # [Edited by zhenwei - 2024-01-20 21:15]
874
+ input_ids = input_ids[:, -1].unsqueeze(-1)
875
+
876
+ return {
877
+ "input_ids": input_ids,
878
+ "past_key_values": past_key_values,
879
+ "attention_mask": attention_mask,
880
+ }
881
+
882
+
883
+ class LlavaMetaModel(ABC):
884
+ """
885
+ Define the APIs for building components that are related to image perceiving.
886
+ This implementation is based on the implementation from the Llave project.
887
+ """
888
+
889
+ def get_vision_tower(self):
890
+ vision_tower = getattr(self, 'vision_tower', None)
891
+ if type(vision_tower) is list:
892
+ vision_tower = vision_tower[0]
893
+ return vision_tower
894
+
895
+ def build_vision_tower(self, config):
896
+ self.vision_tower = VisionTower(config.vision_tower_cfg)
897
+
898
+ def build_vision_projector(self, config):
899
+ projector_type = getattr(config, 'mm_projector_type', 'linear')
900
+
901
+ if projector_type == 'linear':
902
+ self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
903
+ return
904
+
905
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
906
+ if mlp_gelu_match:
907
+ mlp_depth = int(mlp_gelu_match.group(1))
908
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
909
+ for _ in range(1, mlp_depth):
910
+ modules.append(nn.GELU())
911
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
912
+ self.mm_projector = nn.Sequential(*modules)
913
+ return
914
+
915
+ if projector_type == 'identity':
916
+ self.mm_projector = nn.Identity()
917
+ return
918
+
919
+ raise ValueError(f'Unknown projector type: {projector_type}')
920
+
921
+
922
+ class ImpModel(PhiPreTrainedModel, LlavaMetaModel):
923
+ """Imp model. This implementation is modified from the implementation of Phi-2"""
924
+
925
+ config_class = ImpConfig
926
+ # _keys_to_ignore_on_load_missing = [""]
927
+ # _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
928
+
929
+ def __init__(self, config: ImpConfig) -> None:
930
+ super().__init__(config)
931
+
932
+ self.embd = Embedding(config)
933
+ self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
934
+ self.gradient_checkpointing = False
935
+
936
+ if hasattr(config, "mm_vision_tower"):
937
+ self.build_vision_tower(config)
938
+ self.build_vision_projector(config)
939
+
940
+ self.post_init()
941
+
942
+ def embed_tokens(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
943
+ return self.embd(input_ids)[0]
944
+
945
+ def get_input_embeddings(self) -> nn.Embedding:
946
+ return self.embd.wte
947
+
948
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
949
+ self.embd.wte = new_embeddings
950
+
951
+ def forward(
952
+ self,
953
+ input_ids: torch.LongTensor,
954
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
955
+ attention_mask: Optional[torch.BoolTensor] = None,
956
+ inputs_embeds: Optional[torch.FloatTensor] = None
957
+ ) -> torch.FloatTensor:
958
+
959
+ if inputs_embeds is None:
960
+ hidden_states = self.embd(input_ids)
961
+ else:
962
+ hidden_states = inputs_embeds
963
+
964
+ for layer in self.h:
965
+ if self.gradient_checkpointing and self.training:
966
+
967
+ def create_custom_forward(module):
968
+ def custom_forward(*inputs):
969
+ # None for past_key_value
970
+ return module(*inputs)
971
+
972
+ return custom_forward
973
+
974
+ hidden_states = torch.utils.checkpoint.checkpoint(
975
+ create_custom_forward(layer),
976
+ hidden_states,
977
+ None,
978
+ attention_mask,
979
+ )
980
+ else:
981
+ hidden_states = layer(
982
+ hidden_states,
983
+ past_key_values=past_key_values,
984
+ attention_mask=attention_mask,
985
+ )
986
+
987
+ # I change the way of updating `past_key_values.seqlen_offset` to make the inference of imp work.
988
+ # [Edited by zhenwei - 2024-01-20 21:15]
989
+ if past_key_values is not None: # FIXME: when multi-batch inference, it is a bug
990
+ past_key_values.seqlen_offset += hidden_states.shape[1]
991
+
992
+ return hidden_states
993
+
994
+
995
+ class LlavaMetaForCausalLM(ABC):
996
+ """This implementation is based on the implementation from the Llave project."""
997
+
998
+ def init_constants(self, config):
999
+ self.IGNORE_INDEX = getattr(config, 'ignore_index', -100)
1000
+ self.IMAGE_TOKEN_INDEX = getattr(config, 'image_token_index', 50296)
1001
+ self.DEFAULT_IMAGE_TOKEN = getattr(config, 'image_token', "<image>")
1002
+
1003
+ @abstractmethod
1004
+ def get_model(self):
1005
+ pass
1006
+
1007
+ def get_vision_tower(self):
1008
+ return self.get_model().get_vision_tower()
1009
+
1010
+ def encode_images(self, images):
1011
+ image_features = self.get_model().get_vision_tower()(images)
1012
+ image_features = self.get_model().mm_projector(image_features)
1013
+ return image_features
1014
+
1015
+ def prepare_inputs_labels_for_multimodal(
1016
+ self, input_ids, position_ids, attention_mask, past_key_values, labels, images
1017
+ ):
1018
+ vision_tower = self.get_vision_tower()
1019
+ # if vision_tower is None or images is None or past_key_values.seqlen_offset != 0:
1020
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
1021
+ if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
1022
+ target_shape = past_key_values.seqlen_offset + 1
1023
+ # inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...]
1024
+ attention_mask = torch.cat((attention_mask, torch.ones(
1025
+ (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
1026
+ dtype=attention_mask.dtype,
1027
+ device=attention_mask.device
1028
+ )), dim=1)
1029
+ position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
1030
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
1031
+
1032
+ if type(images) is list or images.ndim == 5:
1033
+ concat_images = torch.cat([image for image in images], dim=0)
1034
+ concat_images = concat_images.to(device=self.device, dtype=vision_tower.dtype)
1035
+ image_features = self.encode_images(concat_images)
1036
+ split_sizes = [image.shape[0] for image in images]
1037
+ image_features = torch.split(image_features, split_sizes, dim=0)
1038
+ image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
1039
+ else:
1040
+ images = images.to(device=self.device, dtype=vision_tower.dtype)
1041
+ image_features = self.encode_images(images).to(self.device)
1042
+
1043
+ # TODO: image start / end is not implemented here to support pretraining.
1044
+ if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
1045
+ raise NotImplementedError
1046
+
1047
+ # Let's just add dummy tensors if they do not exist,
1048
+ # it is a headache to deal with None all the time.
1049
+ # But it is not ideal, and if you have a better idea,
1050
+ # please open an issue / submit a PR, thanks.
1051
+ _labels = labels
1052
+ _position_ids = position_ids
1053
+ _attention_mask = attention_mask
1054
+ if attention_mask is None:
1055
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
1056
+ else:
1057
+ attention_mask = attention_mask.bool()
1058
+ if position_ids is None:
1059
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
1060
+ if labels is None:
1061
+ labels = torch.full_like(input_ids, self.IGNORE_INDEX)
1062
+
1063
+ # remove the padding using attention_mask -- TODO: double check
1064
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
1065
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
1066
+
1067
+ new_input_embeds = []
1068
+ new_labels = []
1069
+ cur_image_idx = 0
1070
+ for batch_idx, cur_input_ids in enumerate(input_ids):
1071
+ num_images = (cur_input_ids == self.IMAGE_TOKEN_INDEX).sum()
1072
+ if num_images == 0:
1073
+ cur_image_features = image_features[cur_image_idx]
1074
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
1075
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
1076
+ new_input_embeds.append(cur_input_embeds)
1077
+ new_labels.append(labels[batch_idx])
1078
+ cur_image_idx += 1
1079
+ continue
1080
+
1081
+ image_token_indices = [-1] + torch.where(cur_input_ids == self.IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
1082
+ cur_input_ids_noim = []
1083
+ cur_labels = labels[batch_idx]
1084
+ cur_labels_noim = []
1085
+ for i in range(len(image_token_indices) - 1):
1086
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
1087
+ cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
1088
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
1089
+ cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
1090
+ # print(cur_input_embeds.shape)
1091
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
1092
+ cur_new_input_embeds = []
1093
+ cur_new_labels = []
1094
+
1095
+ for i in range(num_images + 1):
1096
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
1097
+ cur_new_labels.append(cur_labels_noim[i])
1098
+ if i < num_images:
1099
+ cur_image_features = image_features[cur_image_idx]
1100
+ cur_image_idx += 1
1101
+ cur_new_input_embeds.append(cur_image_features)
1102
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), self.IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
1103
+
1104
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
1105
+ cur_new_labels = torch.cat(cur_new_labels)
1106
+
1107
+ new_input_embeds.append(cur_new_input_embeds)
1108
+ new_labels.append(cur_new_labels)
1109
+
1110
+ # Truncate sequences to max length as image embeddings can make the sequence longer
1111
+ tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
1112
+ if tokenizer_model_max_length is not None:
1113
+ new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
1114
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
1115
+
1116
+ # Combine them
1117
+ max_len = max(x.shape[0] for x in new_input_embeds)
1118
+ batch_size = len(new_input_embeds)
1119
+
1120
+ new_input_embeds_padded = []
1121
+ new_labels_padded = torch.full((batch_size, max_len), self.IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
1122
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
1123
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
1124
+
1125
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
1126
+ cur_len = cur_new_embed.shape[0]
1127
+ if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
1128
+ new_input_embeds_padded.append(torch.cat((
1129
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
1130
+ cur_new_embed
1131
+ ), dim=0))
1132
+ if cur_len > 0:
1133
+ new_labels_padded[i, -cur_len:] = cur_new_labels
1134
+ attention_mask[i, -cur_len:] = True
1135
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
1136
+ else:
1137
+ new_input_embeds_padded.append(torch.cat((
1138
+ cur_new_embed,
1139
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
1140
+ ), dim=0))
1141
+ if cur_len > 0:
1142
+ new_labels_padded[i, :cur_len] = cur_new_labels
1143
+ attention_mask[i, :cur_len] = True
1144
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
1145
+
1146
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
1147
+
1148
+ if _labels is None:
1149
+ new_labels = None
1150
+ else:
1151
+ new_labels = new_labels_padded
1152
+
1153
+ if _attention_mask is None:
1154
+ attention_mask = None
1155
+ else:
1156
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
1157
+
1158
+ if _position_ids is None:
1159
+ position_ids = None
1160
+
1161
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
1162
+
1163
+
1164
+ class ImpForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM):
1165
+ """Imp for Causal Language Modeling."""
1166
+
1167
+ # _keys_to_ignore_on_load_missing = [""]
1168
+ # _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
1169
+ config_class = ImpConfig
1170
+
1171
+ def __init__(self, config: ImpConfig) -> None:
1172
+ super().__init__(config)
1173
+
1174
+ self.transformer = ImpModel(config)
1175
+ self.lm_head = CausalLMHead(config)
1176
+
1177
+ self.post_init()
1178
+ self.init_constants(config)
1179
+
1180
+ def get_output_embeddings(self) -> nn.Linear:
1181
+ return self.lm_head.linear
1182
+
1183
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
1184
+ self.lm_head.linear = new_embeddings
1185
+
1186
+ def get_model(self):
1187
+ return self.transformer
1188
+
1189
+ def image_preprocess(self, images):
1190
+ return self.get_vision_tower().image_processor(images)['pixel_values']
1191
+
1192
+ def backbone_forward(
1193
+ self,
1194
+ input_ids: torch.LongTensor,
1195
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
1196
+ attention_mask: Optional[torch.BoolTensor] = None,
1197
+ labels: Optional[torch.LongTensor] = None,
1198
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1199
+ **kwargs,
1200
+ ) -> CausalLMOutputWithPast:
1201
+ hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds)
1202
+ lm_logits = self.lm_head(hidden_states)
1203
+
1204
+ return CausalLMOutputWithPast(loss=None, logits=lm_logits, past_key_values=past_key_values)
1205
+
1206
+ def forward(
1207
+ self,
1208
+ input_ids: torch.LongTensor = None,
1209
+ attention_mask: Optional[torch.Tensor] = None,
1210
+ position_ids: Optional[torch.LongTensor] = None,
1211
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1212
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1213
+ labels: Optional[torch.LongTensor] = None,
1214
+ use_cache: Optional[bool] = None,
1215
+ output_attentions: Optional[bool] = None,
1216
+ output_hidden_states: Optional[bool] = None,
1217
+ images: Optional[torch.FloatTensor] = None,
1218
+ return_dict: Optional[bool] = None,
1219
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1220
+
1221
+ if inputs_embeds is None:
1222
+ (
1223
+ input_ids,
1224
+ position_ids,
1225
+ attention_mask,
1226
+ past_key_values,
1227
+ inputs_embeds,
1228
+ labels
1229
+ ) = self.prepare_inputs_labels_for_multimodal(
1230
+ input_ids,
1231
+ position_ids,
1232
+ attention_mask,
1233
+ past_key_values,
1234
+ labels,
1235
+ images
1236
+ )
1237
+
1238
+ return self.backbone_forward(
1239
+ input_ids=input_ids,
1240
+ attention_mask=attention_mask,
1241
+ position_ids=position_ids,
1242
+ past_key_values=past_key_values,
1243
+ inputs_embeds=inputs_embeds,
1244
+ labels=labels,
1245
+ use_cache=use_cache,
1246
+ output_attentions=output_attentions,
1247
+ output_hidden_states=output_hidden_states,
1248
+ return_dict=return_dict
1249
+ )
1250
+
1251
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
1252
+ images = kwargs.pop("images", None)
1253
+ _inputs = super().prepare_inputs_for_generation(
1254
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
1255
+ )
1256
+ if images is not None:
1257
+ _inputs['images'] = images
1258
+ return _inputs
1259
+
1260
+
1261
+ AutoConfig.register("imp", ImpConfig)
1262
+ AutoModelForCausalLM.register(ImpConfig, ImpForCausalLM)
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c162cd9d0a121183d6c71232d2e8bfbcbd293e9d37b9ecfea8534800a5350efd
3
+ size 6374152890
vision_encoder.py ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) MILVLG team.
2
+ # Licensed under the Apache 2.0 license.
3
+ #
4
+ # Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
5
+ # SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
6
+ # and Llava (https://github.com/haotian-liu/LLaVA), and modified by
7
+ # Zhenwei Shao ([email protected]) @ MILVLG. We thank them for their great works.
8
+ # And their original licenses and copyright should be inherited (see the statements
9
+ # in `configuration_imp.py` for more details).
10
+
11
+
12
+ from typing import Any, Optional, Tuple, Union, List, Dict
13
+ from dataclasses import dataclass
14
+ import math
15
+ import warnings
16
+ from functools import partial, reduce
17
+
18
+
19
+ import numpy as np
20
+ from PIL import Image
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+
25
+ from transformers.image_processing_utils import BatchFeature
26
+ from transformers.image_transforms import (
27
+ convert_to_rgb,
28
+ normalize,
29
+ rescale,
30
+ resize,
31
+ to_channel_dimension_format,
32
+ )
33
+ from transformers.image_utils import (
34
+ ChannelDimension,
35
+ PILImageResampling,
36
+ to_numpy_array,
37
+ )
38
+ from transformers.activations import ACT2FN
39
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.utils import ModelOutput
42
+
43
+ from .configuration_imp import SiglipVisionConfig
44
+
45
+
46
+ # ============================================================================
47
+ # A simple image preprocessor for SigLIP models.
48
+ # ============================================================================
49
+
50
+ def simple_image_processor(
51
+ images,
52
+ image_mean=(0.5, 0.5, 0.5),
53
+ image_std=(0.5, 0.5, 0.5),
54
+ size=(384, 384),
55
+ resample=PILImageResampling.BICUBIC,
56
+ rescale_factor=1 / 255,
57
+ data_format=ChannelDimension.FIRST,
58
+ return_tensors="pt"
59
+ ):
60
+
61
+ if isinstance(images, Image.Image):
62
+ images = [images]
63
+ else:
64
+ assert isinstance(images, list)
65
+
66
+ transforms = [
67
+ convert_to_rgb,
68
+ to_numpy_array,
69
+ partial(resize, size=size, resample=resample, data_format=data_format),
70
+ partial(rescale, scale=rescale_factor, data_format=data_format),
71
+ partial(normalize, mean=image_mean, std=image_std, data_format=data_format),
72
+ partial(to_channel_dimension_format, channel_dim=data_format, input_channel_dim=data_format),
73
+ ]
74
+
75
+ images = reduce(lambda x, f: [*map(f, x)], transforms, images)
76
+ data = {"pixel_values": images}
77
+
78
+ return BatchFeature(data=data, tensor_type=return_tensors)
79
+
80
+ # ============================================================================
81
+ # Definitions for SigLIP models.
82
+ # ============================================================================
83
+
84
+ @dataclass
85
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
86
+ class SiglipVisionModelOutput(ModelOutput):
87
+ """
88
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
89
+
90
+ Args:
91
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
92
+ The image embeddings obtained by applying the projection layer to the pooler_output.
93
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
94
+ Sequence of hidden-states at the output of the last layer of the model.
95
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
96
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
97
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
98
+
99
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
100
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
101
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
102
+ sequence_length)`.
103
+
104
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
105
+ heads.
106
+ """
107
+
108
+ image_embeds: Optional[torch.FloatTensor] = None
109
+ last_hidden_state: torch.FloatTensor = None
110
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
111
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
112
+
113
+
114
+ class SiglipVisionEmbeddings(nn.Module):
115
+ def __init__(self, config: SiglipVisionConfig):
116
+ super().__init__()
117
+ self.config = config
118
+ self.embed_dim = config.hidden_size
119
+ self.image_size = config.image_size
120
+ self.patch_size = config.patch_size
121
+
122
+ self.patch_embedding = nn.Conv2d(
123
+ in_channels=config.num_channels,
124
+ out_channels=self.embed_dim,
125
+ kernel_size=self.patch_size,
126
+ stride=self.patch_size,
127
+ padding="valid",
128
+ )
129
+
130
+ self.num_patches = (self.image_size // self.patch_size) ** 2
131
+ self.num_positions = self.num_patches
132
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
133
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
134
+
135
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
136
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
137
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
138
+
139
+ embeddings = embeddings + self.position_embedding(self.position_ids)
140
+ return embeddings
141
+
142
+
143
+
144
+ class SiglipAttention(nn.Module):
145
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
146
+
147
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
148
+ def __init__(self, config):
149
+ super().__init__()
150
+ self.config = config
151
+ self.embed_dim = config.hidden_size
152
+ self.num_heads = config.num_attention_heads
153
+ self.head_dim = self.embed_dim // self.num_heads
154
+ if self.head_dim * self.num_heads != self.embed_dim:
155
+ raise ValueError(
156
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
157
+ f" {self.num_heads})."
158
+ )
159
+ self.scale = self.head_dim**-0.5
160
+ self.dropout = config.attention_dropout
161
+
162
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
163
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
164
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
165
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
166
+
167
+ def forward(
168
+ self,
169
+ hidden_states: torch.Tensor,
170
+ attention_mask: Optional[torch.Tensor] = None,
171
+ output_attentions: Optional[bool] = False,
172
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
173
+ """Input shape: Batch x Time x Channel"""
174
+
175
+ batch_size, q_len, _ = hidden_states.size()
176
+
177
+ query_states = self.q_proj(hidden_states)
178
+ key_states = self.k_proj(hidden_states)
179
+ value_states = self.v_proj(hidden_states)
180
+
181
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
182
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
183
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
184
+
185
+ k_v_seq_len = key_states.shape[-2]
186
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
187
+
188
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
189
+ raise ValueError(
190
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
191
+ f" {attn_weights.size()}"
192
+ )
193
+
194
+ if attention_mask is not None:
195
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
196
+ raise ValueError(
197
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
198
+ )
199
+ attn_weights = attn_weights + attention_mask
200
+
201
+ # upcast attention to fp32
202
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
203
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
204
+ attn_output = torch.matmul(attn_weights, value_states)
205
+
206
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
207
+ raise ValueError(
208
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
209
+ f" {attn_output.size()}"
210
+ )
211
+
212
+ attn_output = attn_output.transpose(1, 2).contiguous()
213
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
214
+
215
+ attn_output = self.out_proj(attn_output)
216
+
217
+ return attn_output, attn_weights
218
+
219
+
220
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
221
+ class SiglipMLP(nn.Module):
222
+ def __init__(self, config):
223
+ super().__init__()
224
+ self.config = config
225
+ self.activation_fn = ACT2FN[config.hidden_act]
226
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
227
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
228
+
229
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
230
+ hidden_states = self.fc1(hidden_states)
231
+ hidden_states = self.activation_fn(hidden_states)
232
+ hidden_states = self.fc2(hidden_states)
233
+ return hidden_states
234
+
235
+
236
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
237
+ class SiglipEncoderLayer(nn.Module):
238
+ def __init__(self, config: SiglipVisionConfig):
239
+ super().__init__()
240
+ self.embed_dim = config.hidden_size
241
+ self.self_attn = SiglipAttention(config)
242
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
243
+ self.mlp = SiglipMLP(config)
244
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
245
+
246
+ # Ignore copy
247
+ def forward(
248
+ self,
249
+ hidden_states: torch.Tensor,
250
+ attention_mask: torch.Tensor,
251
+ output_attentions: Optional[bool] = False,
252
+ ) -> Tuple[torch.FloatTensor]:
253
+ """
254
+ Args:
255
+ hidden_states (`torch.FloatTensor`):
256
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
257
+ attention_mask (`torch.FloatTensor`):
258
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
259
+ output_attentions (`bool`, *optional*, defaults to `False`):
260
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
261
+ returned tensors for more detail.
262
+ """
263
+ residual = hidden_states
264
+
265
+ hidden_states = self.layer_norm1(hidden_states)
266
+ hidden_states, attn_weights = self.self_attn(
267
+ hidden_states=hidden_states,
268
+ attention_mask=attention_mask,
269
+ output_attentions=output_attentions,
270
+ )
271
+ hidden_states = residual + hidden_states
272
+
273
+ residual = hidden_states
274
+ hidden_states = self.layer_norm2(hidden_states)
275
+ hidden_states = self.mlp(hidden_states)
276
+ hidden_states = residual + hidden_states
277
+
278
+ outputs = (hidden_states,)
279
+
280
+ if output_attentions:
281
+ outputs += (attn_weights,)
282
+
283
+ return outputs
284
+
285
+
286
+ class SiglipPreTrainedModel(PreTrainedModel):
287
+ """
288
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
289
+ models.
290
+ """
291
+
292
+ config_class = SiglipVisionConfig
293
+ base_model_prefix = "siglip"
294
+ supports_gradient_checkpointing = True
295
+
296
+ def _init_weights(self, module):
297
+ """Initialize the weights"""
298
+ pass
299
+
300
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
301
+ class SiglipEncoder(nn.Module):
302
+ """
303
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
304
+ [`SiglipEncoderLayer`].
305
+
306
+ Args:
307
+ config: SiglipVisionConfig
308
+ """
309
+
310
+ def __init__(self, config: SiglipVisionConfig):
311
+ super().__init__()
312
+ self.config = config
313
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
314
+ self.gradient_checkpointing = False
315
+
316
+ # Ignore copy
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ attention_mask: Optional[torch.Tensor] = None,
321
+ output_attentions: Optional[bool] = None,
322
+ output_hidden_states: Optional[bool] = None,
323
+ return_dict: Optional[bool] = None,
324
+ ) -> Union[Tuple, BaseModelOutput]:
325
+ r"""
326
+ Args:
327
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
328
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
329
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
330
+ than the model's internal embedding lookup matrix.
331
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
332
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
333
+
334
+ - 1 for tokens that are **not masked**,
335
+ - 0 for tokens that are **masked**.
336
+
337
+ [What are attention masks?](../glossary#attention-mask)
338
+ output_attentions (`bool`, *optional*):
339
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
340
+ returned tensors for more detail.
341
+ output_hidden_states (`bool`, *optional*):
342
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
343
+ for more detail.
344
+ return_dict (`bool`, *optional*):
345
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
346
+ """
347
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
348
+ output_hidden_states = (
349
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
350
+ )
351
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
352
+
353
+ encoder_states = () if output_hidden_states else None
354
+ all_attentions = () if output_attentions else None
355
+
356
+ hidden_states = inputs_embeds
357
+ for encoder_layer in self.layers:
358
+ if output_hidden_states:
359
+ encoder_states = encoder_states + (hidden_states,)
360
+ if self.gradient_checkpointing and self.training:
361
+ layer_outputs = self._gradient_checkpointing_func(
362
+ encoder_layer.__call__,
363
+ hidden_states,
364
+ attention_mask,
365
+ output_attentions,
366
+ )
367
+ else:
368
+ layer_outputs = encoder_layer(
369
+ hidden_states,
370
+ attention_mask,
371
+ output_attentions=output_attentions,
372
+ )
373
+
374
+ hidden_states = layer_outputs[0]
375
+
376
+ if output_attentions:
377
+ all_attentions = all_attentions + (layer_outputs[1],)
378
+
379
+ if output_hidden_states:
380
+ encoder_states = encoder_states + (hidden_states,)
381
+
382
+ if not return_dict:
383
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
384
+ return BaseModelOutput(
385
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
386
+ )
387
+
388
+
389
+ class SiglipVisionTransformer(nn.Module):
390
+ def __init__(self, config: SiglipVisionConfig):
391
+ super().__init__()
392
+ self.config = config
393
+ embed_dim = config.hidden_size
394
+
395
+ self.embeddings = SiglipVisionEmbeddings(config)
396
+ self.encoder = SiglipEncoder(config)
397
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
398
+ self.head = SiglipMultiheadAttentionPoolingHead(config)
399
+
400
+ def forward(
401
+ self,
402
+ pixel_values,
403
+ output_attentions: Optional[bool] = None,
404
+ output_hidden_states: Optional[bool] = None,
405
+ return_dict: Optional[bool] = None,
406
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
407
+ r"""
408
+ Returns:
409
+
410
+ """
411
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
412
+ output_hidden_states = (
413
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
414
+ )
415
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
416
+
417
+ hidden_states = self.embeddings(pixel_values)
418
+
419
+ encoder_outputs = self.encoder(
420
+ inputs_embeds=hidden_states,
421
+ output_attentions=output_attentions,
422
+ output_hidden_states=output_hidden_states,
423
+ return_dict=return_dict,
424
+ )
425
+
426
+ last_hidden_state = encoder_outputs[0]
427
+ last_hidden_state = self.post_layernorm(last_hidden_state)
428
+
429
+ pooled_output = self.head(last_hidden_state)
430
+
431
+ if not return_dict:
432
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
433
+
434
+ return BaseModelOutputWithPooling(
435
+ last_hidden_state=last_hidden_state,
436
+ pooler_output=pooled_output,
437
+ hidden_states=encoder_outputs.hidden_states,
438
+ attentions=encoder_outputs.attentions,
439
+ )
440
+
441
+
442
+ class SiglipMultiheadAttentionPoolingHead(nn.Module):
443
+ """Multihead Attention Pooling."""
444
+
445
+ def __init__(self, config: SiglipVisionConfig):
446
+ super().__init__()
447
+
448
+ self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
449
+ self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
450
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
451
+ self.mlp = SiglipMLP(config)
452
+
453
+ def forward(self, hidden_state):
454
+ batch_size = hidden_state.shape[0]
455
+ probe = self.probe.repeat(batch_size, 1, 1)
456
+
457
+ hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
458
+
459
+ residual = hidden_state
460
+ hidden_state = self.layernorm(hidden_state)
461
+ hidden_state = residual + self.mlp(hidden_state)
462
+
463
+ return hidden_state[:, 0]
464
+
465
+
466
+ class SiglipVisionModel(SiglipPreTrainedModel):
467
+ config_class = SiglipVisionConfig
468
+ main_input_name = "pixel_values"
469
+ _no_split_modules = ["SiglipEncoderLayer"]
470
+
471
+ def __init__(self, config: SiglipVisionConfig):
472
+ super().__init__(config)
473
+
474
+ self.vision_model = SiglipVisionTransformer(config)
475
+
476
+ # Initialize weights and apply final processing
477
+ self.post_init()
478
+
479
+ def get_input_embeddings(self) -> nn.Module:
480
+ return self.vision_model.embeddings.patch_embedding
481
+
482
+ def forward(
483
+ self,
484
+ pixel_values,
485
+ output_attentions: Optional[bool] = None,
486
+ output_hidden_states: Optional[bool] = None,
487
+ return_dict: Optional[bool] = None,
488
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
489
+ r"""
490
+ Returns:
491
+
492
+ Examples:
493
+
494
+ ```python
495
+ >>> from PIL import Image
496
+ >>> import requests
497
+ >>> from transformers import AutoProcessor, SiglipVisionModel
498
+
499
+ >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
500
+ >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
501
+
502
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
503
+ >>> image = Image.open(requests.get(url, stream=True).raw)
504
+
505
+ >>> inputs = processor(images=image, return_tensors="pt")
506
+
507
+ >>> outputs = model(**inputs)
508
+ >>> last_hidden_state = outputs.last_hidden_state
509
+ >>> pooled_output = outputs.pooler_output # pooled features
510
+ ```"""
511
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
512
+
513
+ return self.vision_model(
514
+ pixel_values=pixel_values,
515
+ output_attentions=output_attentions,
516
+ output_hidden_states=output_hidden_states,
517
+ return_dict=return_dict,
518
+ )
519
+
520
+
521
+ # ============================================================================
522
+ # VisionTower module for Imp
523
+ # ============================================================================
524
+
525
+ class VisionTower(nn.Module):
526
+ def __init__(self, vision_tower_cfg, delay_load=False):
527
+ super().__init__()
528
+
529
+ self.is_loaded = False
530
+
531
+ self.config = vision_tower_cfg
532
+ self.vision_tower_name = vision_tower_cfg.mm_vision_tower
533
+ self.select_layer = vision_tower_cfg.mm_vision_select_layer
534
+ # self.select_feature = getattr(vision_tower_cfg, 'mm_vision_select_feature', 'patch')
535
+
536
+ self.image_processor = simple_image_processor
537
+
538
+ if not delay_load:
539
+ self.load_model()
540
+ else:
541
+ raise NotImplementedError("delay load is not implemented yet.")
542
+
543
+ def load_model(self):
544
+ if self.is_loaded:
545
+ return
546
+
547
+ # "google/siglip-so400m-patch14-384"
548
+ # self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
549
+ self.vision_tower = SiglipVisionModel(self.config)
550
+ del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
551
+ self.vision_tower.vision_model.head = nn.Identity()
552
+ self.vision_tower.requires_grad_(False)
553
+ self.vision_tower.eval()
554
+
555
+ self.is_loaded = True
556
+
557
+ @torch.no_grad()
558
+ def forward(self, images):
559
+ if type(images) is list:
560
+ image_features = []
561
+ for image in images:
562
+ image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
563
+ image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
564
+ assert image_features.shape[-2] == 729
565
+ image_features.append(image_feature)
566
+ else:
567
+ image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
568
+ image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
569
+ assert image_features.shape[-2] == 729
570
+
571
+ return image_features
572
+
573
+ @property
574
+ def dummy_feature(self):
575
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
576
+
577
+ @property
578
+ def dtype(self):
579
+ for p in self.vision_tower.parameters():
580
+ return p.dtype
581
+
582
+ @property
583
+ def device(self):
584
+ for p in self.vision_tower.parameters():
585
+ return p.device
586
+
587
+ @property
588
+ def hidden_size(self):
589
+ return self.config.hidden_size
590
+
591
+ @property
592
+ def num_patches(self):
593
+ return (self.config.image_size // self.config.patch_size) ** 2