|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import math |
|
from typing import Optional, Union |
|
|
|
from transformers import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PhiConfig(PretrainedConfig): |
|
"""Phi configuration.""" |
|
|
|
model_type = "phi-msft" |
|
attribute_map = { |
|
"max_position_embeddings": "n_positions", |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 50304, |
|
n_positions: int = 2048, |
|
n_embd: int = 1024, |
|
n_layer: int = 20, |
|
n_inner: Optional[int] = None, |
|
n_head: int = 16, |
|
n_head_kv: Optional[int] = None, |
|
rotary_dim: Optional[int] = 32, |
|
activation_function: Optional[str] = "gelu_new", |
|
flash_attn: bool = False, |
|
flash_rotary: bool = False, |
|
fused_dense: bool = False, |
|
attn_pdrop: float = 0.0, |
|
embd_pdrop: float = 0.0, |
|
resid_pdrop: float = 0.0, |
|
layer_norm_epsilon: float = 1e-5, |
|
initializer_range: float = 0.02, |
|
tie_word_embeddings: bool = False, |
|
pad_vocab_size_multiple: int = 64, |
|
**kwargs |
|
) -> None: |
|
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_inner = n_inner |
|
self.n_head = n_head |
|
self.n_head_kv = n_head_kv |
|
self.rotary_dim = min(rotary_dim, n_embd // n_head) |
|
self.activation_function = activation_function |
|
self.flash_attn = flash_attn |
|
self.flash_rotary = flash_rotary |
|
self.fused_dense = fused_dense |
|
self.attn_pdrop = attn_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.resid_pdrop = resid_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
|
|
class SiglipVisionConfig(PretrainedConfig): |
|
|
|
model_type = "siglip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=16, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "siglip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class ImpConfig(PhiConfig): |
|
model_type = "imp" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.image_token_index = getattr(self, "image_token_index", 50296) |
|
self.image_token = getattr(self, "image_token", "<image>") |
|
|
|
if not hasattr(self, "vision_tower_config") and hasattr(self, "mm_vision_tower"): |
|
vision_tower_config = SiglipVisionConfig.from_pretrained(self.mm_vision_tower) |
|
self.vision_tower_config = vision_tower_config.to_diff_dict() |
|
|
|
@property |
|
def vision_tower_cfg(self): |
|
cfg = SiglipVisionConfig.from_dict(self.vision_tower_config) |
|
|
|
|
|
cfg.mm_vision_select_layer = self.mm_vision_select_layer |
|
cfg.mm_vision_tower = self.mm_vision_tower |
|
return cfg |
|
|