MaRiOrOsSi
commited on
Commit
•
2c815b9
1
Parent(s):
d6e56cb
Update README.md
Browse files
README.md
CHANGED
@@ -9,3 +9,53 @@ widget:
|
|
9 |
tags:
|
10 |
- Generative Question Answering
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
tags:
|
10 |
- Generative Question Answering
|
11 |
---
|
12 |
+
|
13 |
+
# T5 for Generative Question Answering
|
14 |
+
|
15 |
+
This model is the result produced by Christian Di Maio and Giacomo Nunziati for the Language Processing Technologies exam.
|
16 |
+
Reference for [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [DuoRC](https://huggingface.co/datasets/duorc) for **Generative Question Answering** by just prepending the *question* to the *context*.
|
17 |
+
|
18 |
+
## Code
|
19 |
+
The code used for T5 training is available at this [repository](https://github.com/nunziati/bert-vs-t5-for-question-answering/blob/main/train_t5_selfrc.py).
|
20 |
+
|
21 |
+
## Results
|
22 |
+
The results are evaluated on:
|
23 |
+
|
24 |
+
- DuoRC/SelfRC -> Test Subset
|
25 |
+
- DuoRC/ParaphraseRC -> Test Subset
|
26 |
+
- SQUADv1 -> Validation Subset
|
27 |
+
|
28 |
+
Removing all tokens not related to dictionary words from the evaluation metrics.
|
29 |
+
The model used as reference is BERT finetuned on SQUAD v1.
|
30 |
+
|
31 |
+
| Model | SelfRC | ParaphraseRC | SQUAD
|
32 |
+
|--|--|--|--|
|
33 |
+
| T5-BASE-FINETUNED | **F1**: 49.00 **EM**: 31.38 | **F1**: 28.75 **EM**: 15.18 | **F1**: 63.28 **EM**: 37.24 |
|
34 |
+
| BERT-BASE-FINETUNED | **F1**: 47.18 **EM**: 30.76 | **F1**: 21.20 **EM**: 12.62 | **F1**: 77.19 **EM**: 57.81 |
|
35 |
+
|
36 |
+
## How to use it 🚀
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
40 |
+
|
41 |
+
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
44 |
+
question = "What is 42?"
|
45 |
+
context = "42 is the answer to life, the universe and everything"
|
46 |
+
input = f"question: {question} context: {context}"
|
47 |
+
encoded_input = tokenizer([input],
|
48 |
+
return_tensors='pt',
|
49 |
+
max_length=512,
|
50 |
+
truncation=True)
|
51 |
+
output = model.generate(input_ids = encoded_input.input_ids,
|
52 |
+
attention_mask = encoded_input.attention_mask)
|
53 |
+
output = tokenizer.decode(output[0], skip_special_tokens=True)
|
54 |
+
print(output)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Citation
|
58 |
+
|
59 |
+
Created by [Christian Di Maio](https://it.linkedin.com/in/christiandimaio) and [Giacomo Nunziati](https://it.linkedin.com/in/giacomo-nunziati-b19572185)
|
60 |
+
|
61 |
+
> Made with <span style="color: #e25555;">♥</span> in Italy
|