Update README.md
Browse files
README.md
CHANGED
@@ -28,17 +28,17 @@ You can use the raw model for predicting pixel values for masked patches of a vi
|
|
28 |
Here is how to use this model to predict pixel values for randomly masked patches:
|
29 |
|
30 |
```python
|
31 |
-
from transformers import
|
32 |
import numpy as np
|
33 |
import torch
|
34 |
|
35 |
num_frames = 16
|
36 |
video = list(np.random.randn(16, 3, 224, 224))
|
37 |
|
38 |
-
|
39 |
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short")
|
40 |
|
41 |
-
pixel_values =
|
42 |
|
43 |
num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
|
44 |
seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
|
|
|
28 |
Here is how to use this model to predict pixel values for randomly masked patches:
|
29 |
|
30 |
```python
|
31 |
+
from transformers import VideoMAEImageProcessor, VideoMAEForPreTraining
|
32 |
import numpy as np
|
33 |
import torch
|
34 |
|
35 |
num_frames = 16
|
36 |
video = list(np.random.randn(16, 3, 224, 224))
|
37 |
|
38 |
+
processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-base-short")
|
39 |
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short")
|
40 |
|
41 |
+
pixel_values = processor(video, return_tensors="pt").pixel_values
|
42 |
|
43 |
num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
|
44 |
seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
|