Text Generation
Transformers
PyTorch
English
llama
custom_code
text-generation-inference
Inference Endpoints
omkarthawakar commited on
Commit
59ac8a2
1 Parent(s): 1b37b2d

initial upload

Browse files

uploaded model files

added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0
5
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "MobiLlama",
3
+ "architectures": [
4
+ "MobiLlamaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoModelForCausalLM": "modeling_mobillama.MobiLlamaForCausalLM"
8
+ },
9
+ "attention_bias": false,
10
+ "attention_dropout": 0.0,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 2048,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 5632,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 22,
21
+ "num_key_value_heads": 4,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 10000.0,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.36.1",
29
+ "use_cache": true,
30
+ "vocab_size": 32000
31
+ }
configuration_llama.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+
23
+ from transformers.configuration_utils import PretrainedConfig
24
+ from transformers.utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
30
+
31
+
32
+ class LlamaConfig(PretrainedConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
35
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
36
+ defaults will yield a similar configuration to that of the LLaMA-7B.
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`LlamaModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 11008):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer decoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer decoder.
54
+ num_key_value_heads (`int`, *optional*):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
61
+ `num_attention_heads`.
62
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
63
+ The non-linear activation function (function or string) in the decoder.
64
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
65
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
66
+ Llama 2 up to 4096, CodeLlama up to 16384.
67
+ initializer_range (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
70
+ The epsilon used by the rms normalization layers.
71
+ use_cache (`bool`, *optional*, defaults to `True`):
72
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
73
+ relevant if `config.is_decoder=True`.
74
+ pad_token_id (`int`, *optional*):
75
+ Padding token id.
76
+ bos_token_id (`int`, *optional*, defaults to 1):
77
+ Beginning of stream token id.
78
+ eos_token_id (`int`, *optional*, defaults to 2):
79
+ End of stream token id.
80
+ pretraining_tp (`int`, *optional*, defaults to 1):
81
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
82
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
83
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
84
+ issue](https://github.com/pytorch/pytorch/issues/76232).
85
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
86
+ Whether to tie weight embeddings
87
+ rope_theta (`float`, *optional*, defaults to 10000.0):
88
+ The base period of the RoPE embeddings.
89
+ rope_scaling (`Dict`, *optional*):
90
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
91
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
92
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
93
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
94
+ these scaling strategies behave:
95
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
96
+ experimental feature, subject to breaking API changes in future versions.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+
102
+ ```python
103
+ >>> from transformers import LlamaModel, LlamaConfig
104
+
105
+ >>> # Initializing a LLaMA llama-7b style configuration
106
+ >>> configuration = LlamaConfig()
107
+
108
+ >>> # Initializing a model from the llama-7b style configuration
109
+ >>> model = LlamaModel(configuration)
110
+
111
+ >>> # Accessing the model configuration
112
+ >>> configuration = model.config
113
+ ```"""
114
+
115
+ model_type = "llama"
116
+ keys_to_ignore_at_inference = ["past_key_values"]
117
+
118
+ def __init__(
119
+ self,
120
+ vocab_size=32000,
121
+ hidden_size=2048,
122
+ intermediate_size=5632,
123
+ num_hidden_layers=22,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=None,
126
+ hidden_act="silu",
127
+ max_position_embeddings=2048,
128
+ initializer_range=0.02,
129
+ rms_norm_eps=1e-6,
130
+ use_cache=True,
131
+ pad_token_id=None,
132
+ bos_token_id=1,
133
+ eos_token_id=2,
134
+ pretraining_tp=1,
135
+ tie_word_embeddings=False,
136
+ rope_theta=10000.0,
137
+ rope_scaling=None,
138
+ attention_bias=False,
139
+ attention_dropout=0.0,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ # for backward compatibility
150
+ if num_key_value_heads is None:
151
+ num_key_value_heads = num_attention_heads
152
+
153
+ self.num_key_value_heads = num_key_value_heads
154
+ self.hidden_act = hidden_act
155
+ self.initializer_range = initializer_range
156
+ self.rms_norm_eps = rms_norm_eps
157
+ self.pretraining_tp = pretraining_tp
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self._rope_scaling_validation()
162
+ self.attention_bias = attention_bias
163
+ self.attention_dropout = attention_dropout
164
+
165
+ super().__init__(
166
+ pad_token_id=pad_token_id,
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
181
+ raise ValueError(
182
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
183
+ f"got {self.rope_scaling}"
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get("type", None)
186
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
187
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
188
+ raise ValueError(
189
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
190
+ )
191
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
192
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.34.0"
6
+ }
modeling_llama.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ # from transformers.models.llama.configuration_llama import LlamaConfig
34
+ from .configuration_llama import LlamaConfig
35
+
36
+ from flash_attn import flash_attn_func
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CONFIG_FOR_DOC = "LlamaConfig"
42
+
43
+
44
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
45
+ def _make_causal_mask(
46
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
47
+ ):
48
+ """
49
+ Make causal mask used for bi-directional self-attention.
50
+ """
51
+ bsz, tgt_len = input_ids_shape
52
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
53
+ mask_cond = torch.arange(mask.size(-1), device=device)
54
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
55
+ mask = mask.to(dtype)
56
+
57
+ if past_key_values_length > 0:
58
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
59
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
60
+
61
+
62
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
63
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
64
+ """
65
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
66
+ """
67
+ bsz, src_len = mask.size()
68
+ tgt_len = tgt_len if tgt_len is not None else src_len
69
+
70
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
71
+
72
+ inverted_mask = 1.0 - expanded_mask
73
+
74
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
75
+
76
+
77
+ class LlamaRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ LlamaRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+
91
+ return (self.weight * hidden_states).to(input_dtype)
92
+
93
+
94
+ class LlamaRotaryEmbedding(torch.nn.Module):
95
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
96
+ super().__init__()
97
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
98
+ self.register_buffer("inv_freq", inv_freq)
99
+
100
+ # Build here to make `torch.jit.trace` work.
101
+ self.max_seq_len_cached = max_position_embeddings
102
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
103
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
104
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
105
+ emb = torch.cat((freqs, freqs), dim=-1)
106
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
107
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
108
+
109
+ def forward(self, x, seq_len=None):
110
+ # x: [bs, num_attention_heads, seq_len, head_size]
111
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
112
+ if seq_len > self.max_seq_len_cached:
113
+ self.max_seq_len_cached = seq_len
114
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
115
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
116
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
117
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
118
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
119
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
120
+ return (
121
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
123
+ )
124
+
125
+
126
+ def rotate_half(x):
127
+ """Rotates half the hidden dims of the input."""
128
+ x1 = x[..., : x.shape[-1] // 2]
129
+ x2 = x[..., x.shape[-1] // 2 :]
130
+ return torch.cat((-x2, x1), dim=-1)
131
+
132
+
133
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
134
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
135
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
136
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
137
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
139
+ q_embed = (q * cos) + (rotate_half(q) * sin)
140
+ k_embed = (k * cos) + (rotate_half(k) * sin)
141
+ return q_embed, k_embed
142
+
143
+
144
+ class LlamaMLP(nn.Module):
145
+ def __init__(
146
+ self,
147
+ hidden_size: int,
148
+ intermediate_size: int,
149
+ hidden_act: str,
150
+ ):
151
+ super().__init__()
152
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
153
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
154
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
+ self.act_fn = ACT2FN[hidden_act]
156
+
157
+ def forward(self, x):
158
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
159
+
160
+
161
+ class LlamaAttention(nn.Module):
162
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
163
+
164
+ def __init__(self, config: LlamaConfig):
165
+ super().__init__()
166
+ self.config = config
167
+ self.hidden_size = config.hidden_size
168
+ self.num_heads = config.num_attention_heads
169
+ self.head_dim = self.hidden_size // self.num_heads
170
+ self.max_position_embeddings = config.max_position_embeddings
171
+
172
+ if (self.head_dim * self.num_heads) != self.hidden_size:
173
+ raise ValueError(
174
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
175
+ f" and `num_heads`: {self.num_heads})."
176
+ )
177
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
180
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
181
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
182
+
183
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
184
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
185
+
186
+ def forward(
187
+ self,
188
+ hidden_states: torch.Tensor,
189
+ attention_mask: Optional[torch.Tensor] = None,
190
+ position_ids: Optional[torch.LongTensor] = None,
191
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
192
+ output_attentions: bool = False,
193
+ use_cache: bool = False,
194
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
195
+ bsz, q_len, _ = hidden_states.size()
196
+
197
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
200
+
201
+ kv_seq_len = key_states.shape[-2]
202
+ if past_key_value is not None:
203
+ kv_seq_len += past_key_value[0].shape[-2]
204
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
205
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
206
+ # [bsz, nh, t, hd]
207
+
208
+ if past_key_value is not None:
209
+ # reuse k, v, self_attention
210
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
211
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
212
+
213
+ past_key_value = (key_states, value_states) if use_cache else None
214
+
215
+ # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
216
+ #
217
+ # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
218
+ # raise ValueError(
219
+ # f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
220
+ # f" {attn_weights.size()}"
221
+ # )
222
+ #
223
+ # if attention_mask is not None:
224
+ # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
225
+ # raise ValueError(
226
+ # f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
227
+ # )
228
+ # attn_weights = attn_weights + attention_mask
229
+ # attn_weights = torch.max(
230
+ # attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
231
+ # )
232
+ #
233
+ # # upcast attention to fp32
234
+ # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
235
+ # attn_output = torch.matmul(attn_weights, value_states)
236
+ #
237
+ # if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
238
+ # raise ValueError(
239
+ # f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
240
+ # f" {attn_output.size()}"
241
+ # )
242
+ #
243
+ # attn_output = attn_output.transpose(1, 2)
244
+
245
+ attn_output = flash_attn_func(
246
+ q=query_states.transpose(1, 2).to(torch.bfloat16),
247
+ k=key_states.transpose(1, 2).to(torch.bfloat16),
248
+ v=value_states.transpose(1, 2).to(torch.bfloat16),
249
+ causal=True)
250
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
251
+ attn_output = attn_output.to(query_states.dtype)
252
+
253
+ attn_output = self.o_proj(attn_output)
254
+
255
+ # if not output_attentions:
256
+ # attn_weights = None
257
+ assert not output_attentions
258
+ attn_weights = None
259
+
260
+ return attn_output, attn_weights, past_key_value
261
+
262
+
263
+ class LlamaDecoderLayer(nn.Module):
264
+ def __init__(self, config: LlamaConfig, mlp):
265
+ super().__init__()
266
+ self.hidden_size = config.hidden_size
267
+ self.self_attn = LlamaAttention(config=config)
268
+ self.mlp = mlp #LlamaMLP(hidden_size=self.hidden_size,intermediate_size=config.intermediate_size,hidden_act=config.hidden_act,)
269
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
270
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states: torch.Tensor,
275
+ attention_mask: Optional[torch.Tensor] = None,
276
+ position_ids: Optional[torch.LongTensor] = None,
277
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
278
+ output_attentions: Optional[bool] = False,
279
+ use_cache: Optional[bool] = False,
280
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
281
+ """
282
+ Args:
283
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
284
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
285
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
286
+ output_attentions (`bool`, *optional*):
287
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
288
+ returned tensors for more detail.
289
+ use_cache (`bool`, *optional*):
290
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
291
+ (see `past_key_values`).
292
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
293
+ """
294
+
295
+ residual = hidden_states
296
+
297
+ hidden_states = self.input_layernorm(hidden_states)
298
+
299
+ # Self Attention
300
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
301
+ hidden_states=hidden_states,
302
+ attention_mask=attention_mask,
303
+ position_ids=position_ids,
304
+ past_key_value=past_key_value,
305
+ output_attentions=output_attentions,
306
+ use_cache=use_cache,
307
+ )
308
+ hidden_states = residual + hidden_states
309
+
310
+ # Fully Connected
311
+ residual = hidden_states
312
+ hidden_states = self.post_attention_layernorm(hidden_states)
313
+ hidden_states = self.mlp(hidden_states)
314
+ hidden_states = residual + hidden_states
315
+
316
+ outputs = (hidden_states,)
317
+
318
+ if output_attentions:
319
+ outputs += (self_attn_weights,)
320
+
321
+ if use_cache:
322
+ outputs += (present_key_value,)
323
+
324
+ return outputs
325
+
326
+
327
+ LLAMA_START_DOCSTRING = r"""
328
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
329
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
330
+ etc.)
331
+
332
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
333
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
334
+ and behavior.
335
+
336
+ Parameters:
337
+ config ([`LlamaConfig`]):
338
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
339
+ load the weights associated with the model, only the configuration. Check out the
340
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
341
+ """
342
+
343
+
344
+ @add_start_docstrings(
345
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
346
+ LLAMA_START_DOCSTRING,
347
+ )
348
+ class LlamaPreTrainedModel(PreTrainedModel):
349
+ config_class = LlamaConfig
350
+ base_model_prefix = "model"
351
+ supports_gradient_checkpointing = True
352
+ _no_split_modules = ["LlamaDecoderLayer"]
353
+ _skip_keys_device_placement = "past_key_values"
354
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
355
+
356
+ def _init_weights(self, module):
357
+ std = self.config.initializer_range
358
+ if isinstance(module, nn.Linear):
359
+ module.weight.data.normal_(mean=0.0, std=std)
360
+ if module.bias is not None:
361
+ module.bias.data.zero_()
362
+ elif isinstance(module, nn.Embedding):
363
+ module.weight.data.normal_(mean=0.0, std=std)
364
+ if module.padding_idx is not None:
365
+ module.weight.data[module.padding_idx].zero_()
366
+
367
+ def _set_gradient_checkpointing(self, module, value=False):
368
+ if isinstance(module, LlamaModel):
369
+ module.gradient_checkpointing = value
370
+
371
+
372
+ LLAMA_INPUTS_DOCSTRING = r"""
373
+ Args:
374
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
375
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
376
+ it.
377
+
378
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
379
+ [`PreTrainedTokenizer.__call__`] for details.
380
+
381
+ [What are input IDs?](../glossary#input-ids)
382
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
383
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
384
+
385
+ - 1 for tokens that are **not masked**,
386
+ - 0 for tokens that are **masked**.
387
+
388
+ [What are attention masks?](../glossary#attention-mask)
389
+
390
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
391
+ [`PreTrainedTokenizer.__call__`] for details.
392
+
393
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
394
+ `past_key_values`).
395
+
396
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
397
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
398
+ information on the default strategy.
399
+
400
+ - 1 indicates the head is **not masked**,
401
+ - 0 indicates the head is **masked**.
402
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
403
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
404
+ config.n_positions - 1]`.
405
+
406
+ [What are position IDs?](../glossary#position-ids)
407
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
408
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
409
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
410
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
411
+
412
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
413
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
414
+
415
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
416
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
417
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
418
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
419
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
420
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
421
+ model's internal embedding lookup matrix.
422
+ use_cache (`bool`, *optional*):
423
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
424
+ `past_key_values`).
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
433
+ """
434
+
435
+
436
+ @add_start_docstrings(
437
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
438
+ LLAMA_START_DOCSTRING,
439
+ )
440
+ class LlamaModel(LlamaPreTrainedModel):
441
+ """
442
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
443
+
444
+ Args:
445
+ config: LlamaConfig
446
+ """
447
+
448
+ def __init__(self, config: LlamaConfig):
449
+ super().__init__(config)
450
+ self.padding_idx = config.pad_token_id
451
+ self.vocab_size = config.vocab_size
452
+
453
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
454
+ mlp = LlamaMLP(
455
+ hidden_size=config.hidden_size,
456
+ intermediate_size=config.intermediate_size,
457
+ hidden_act=config.hidden_act,
458
+ )
459
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config, mlp) for _ in range(config.num_hidden_layers)])
460
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
461
+
462
+ self.gradient_checkpointing = False
463
+ # Initialize weights and apply final processing
464
+ self.post_init()
465
+
466
+ def get_input_embeddings(self):
467
+ return self.embed_tokens
468
+
469
+ def set_input_embeddings(self, value):
470
+ self.embed_tokens = value
471
+
472
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
473
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
474
+ # create causal mask
475
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
476
+ combined_attention_mask = None
477
+ if input_shape[-1] > 1:
478
+ combined_attention_mask = _make_causal_mask(
479
+ input_shape,
480
+ inputs_embeds.dtype,
481
+ device=inputs_embeds.device,
482
+ past_key_values_length=past_key_values_length,
483
+ )
484
+
485
+ if attention_mask is not None:
486
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
487
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
488
+ inputs_embeds.device
489
+ )
490
+ combined_attention_mask = (
491
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
492
+ )
493
+
494
+ return combined_attention_mask
495
+
496
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
497
+ def forward(
498
+ self,
499
+ input_ids: torch.LongTensor = None,
500
+ attention_mask: Optional[torch.Tensor] = None,
501
+ position_ids: Optional[torch.LongTensor] = None,
502
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
503
+ inputs_embeds: Optional[torch.FloatTensor] = None,
504
+ use_cache: Optional[bool] = None,
505
+ output_attentions: Optional[bool] = None,
506
+ output_hidden_states: Optional[bool] = None,
507
+ return_dict: Optional[bool] = None,
508
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
509
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
510
+ output_hidden_states = (
511
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
512
+ )
513
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
514
+
515
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
516
+
517
+ # retrieve input_ids and inputs_embeds
518
+ if input_ids is not None and inputs_embeds is not None:
519
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
520
+ elif input_ids is not None:
521
+ batch_size, seq_length = input_ids.shape
522
+ elif inputs_embeds is not None:
523
+ batch_size, seq_length, _ = inputs_embeds.shape
524
+ else:
525
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
526
+
527
+ seq_length_with_past = seq_length
528
+ past_key_values_length = 0
529
+
530
+ if past_key_values is not None:
531
+ past_key_values_length = past_key_values[0][0].shape[2]
532
+ seq_length_with_past = seq_length_with_past + past_key_values_length
533
+
534
+ if position_ids is None:
535
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
536
+ position_ids = torch.arange(
537
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
538
+ )
539
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
540
+ else:
541
+ position_ids = position_ids.view(-1, seq_length).long()
542
+
543
+ if inputs_embeds is None:
544
+ inputs_embeds = self.embed_tokens(input_ids)
545
+ # embed positions
546
+ if attention_mask is None:
547
+ attention_mask = torch.ones(
548
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
549
+ )
550
+ attention_mask = self._prepare_decoder_attention_mask(
551
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
552
+ )
553
+
554
+ hidden_states = inputs_embeds
555
+
556
+ if self.gradient_checkpointing and self.training:
557
+ if use_cache:
558
+ logger.warning_once(
559
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
560
+ )
561
+ use_cache = False
562
+
563
+ # decoder layers
564
+ all_hidden_states = () if output_hidden_states else None
565
+ all_self_attns = () if output_attentions else None
566
+ next_decoder_cache = () if use_cache else None
567
+
568
+ for idx, decoder_layer in enumerate(self.layers):
569
+ if output_hidden_states:
570
+ all_hidden_states += (hidden_states,)
571
+
572
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
573
+
574
+ if self.gradient_checkpointing and self.training:
575
+
576
+ def create_custom_forward(module):
577
+ def custom_forward(*inputs):
578
+ # None for past_key_value
579
+ return module(*inputs, output_attentions, None)
580
+
581
+ return custom_forward
582
+
583
+ layer_outputs = torch.utils.checkpoint.checkpoint(
584
+ create_custom_forward(decoder_layer),
585
+ hidden_states,
586
+ attention_mask,
587
+ position_ids,
588
+ None,
589
+ )
590
+ else:
591
+ layer_outputs = decoder_layer(
592
+ hidden_states,
593
+ attention_mask=attention_mask,
594
+ position_ids=position_ids,
595
+ past_key_value=past_key_value,
596
+ output_attentions=output_attentions,
597
+ use_cache=use_cache,
598
+ )
599
+
600
+ hidden_states = layer_outputs[0]
601
+
602
+ if use_cache:
603
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
604
+
605
+ if output_attentions:
606
+ all_self_attns += (layer_outputs[1],)
607
+
608
+ hidden_states = self.norm(hidden_states)
609
+
610
+ # add hidden states from the last decoder layer
611
+ if output_hidden_states:
612
+ all_hidden_states += (hidden_states,)
613
+
614
+ next_cache = next_decoder_cache if use_cache else None
615
+ if not return_dict:
616
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
617
+ return BaseModelOutputWithPast(
618
+ last_hidden_state=hidden_states,
619
+ past_key_values=next_cache,
620
+ hidden_states=all_hidden_states,
621
+ attentions=all_self_attns,
622
+ )
623
+
624
+
625
+ class LlamaForCausalLM(LlamaPreTrainedModel):
626
+ def __init__(self, config):
627
+ super().__init__(config)
628
+ self.model = LlamaModel(config)
629
+
630
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
631
+
632
+ # Initialize weights and apply final processing
633
+ self.post_init()
634
+
635
+ def get_input_embeddings(self):
636
+ return self.model.embed_tokens
637
+
638
+ def set_input_embeddings(self, value):
639
+ self.model.embed_tokens = value
640
+
641
+ def get_output_embeddings(self):
642
+ return self.lm_head
643
+
644
+ def set_output_embeddings(self, new_embeddings):
645
+ self.lm_head = new_embeddings
646
+
647
+ def set_decoder(self, decoder):
648
+ self.model = decoder
649
+
650
+ def get_decoder(self):
651
+ return self.model
652
+
653
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
654
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
655
+ def forward(
656
+ self,
657
+ input_ids: torch.LongTensor = None,
658
+ attention_mask: Optional[torch.Tensor] = None,
659
+ position_ids: Optional[torch.LongTensor] = None,
660
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
661
+ inputs_embeds: Optional[torch.FloatTensor] = None,
662
+ labels: Optional[torch.LongTensor] = None,
663
+ use_cache: Optional[bool] = None,
664
+ output_attentions: Optional[bool] = None,
665
+ output_hidden_states: Optional[bool] = None,
666
+ return_dict: Optional[bool] = None,
667
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
668
+ r"""
669
+ Args:
670
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
671
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
672
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
673
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
674
+
675
+ Returns:
676
+
677
+ Example:
678
+
679
+ ```python
680
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
681
+
682
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
683
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
684
+
685
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
686
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
687
+
688
+ >>> # Generate
689
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
690
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
691
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
692
+ ```"""
693
+
694
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
695
+ output_hidden_states = (
696
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
697
+ )
698
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
699
+
700
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
701
+ outputs = self.model(
702
+ input_ids=input_ids,
703
+ attention_mask=attention_mask,
704
+ position_ids=position_ids,
705
+ past_key_values=past_key_values,
706
+ inputs_embeds=inputs_embeds,
707
+ use_cache=use_cache,
708
+ output_attentions=output_attentions,
709
+ output_hidden_states=output_hidden_states,
710
+ return_dict=return_dict,
711
+ )
712
+
713
+ hidden_states = outputs[0]
714
+ logits = self.lm_head(hidden_states)
715
+
716
+ loss = None
717
+ if labels is not None:
718
+ # Shift so that tokens < n predict n
719
+ shift_logits = logits[..., :-1, :].contiguous()
720
+ shift_labels = labels[..., 1:].contiguous()
721
+ # Flatten the tokens
722
+ loss_fct = CrossEntropyLoss()
723
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
724
+ shift_labels = shift_labels.view(-1)
725
+ # Enable model parallelism
726
+ shift_labels = shift_labels.to(shift_logits.device)
727
+ loss = loss_fct(shift_logits, shift_labels)
728
+
729
+ if not return_dict:
730
+ output = (logits,) + outputs[1:]
731
+ return (loss,) + output if loss is not None else output
732
+
733
+ return CausalLMOutputWithPast(
734
+ loss=loss,
735
+ logits=logits,
736
+ past_key_values=outputs.past_key_values,
737
+ hidden_states=outputs.hidden_states,
738
+ attentions=outputs.attentions,
739
+ )
740
+
741
+ def prepare_inputs_for_generation(
742
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
743
+ ):
744
+ if past_key_values:
745
+ input_ids = input_ids[:, -1:]
746
+
747
+ position_ids = kwargs.get("position_ids", None)
748
+ if attention_mask is not None and position_ids is None:
749
+ # create position_ids on the fly for batch generation
750
+ position_ids = attention_mask.long().cumsum(-1) - 1
751
+ position_ids.masked_fill_(attention_mask == 0, 1)
752
+ if past_key_values:
753
+ position_ids = position_ids[:, -1].unsqueeze(-1)
754
+
755
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
756
+ if inputs_embeds is not None and past_key_values is None:
757
+ model_inputs = {"inputs_embeds": inputs_embeds}
758
+ else:
759
+ model_inputs = {"input_ids": input_ids}
760
+
761
+ model_inputs.update(
762
+ {
763
+ "position_ids": position_ids,
764
+ "past_key_values": past_key_values,
765
+ "use_cache": kwargs.get("use_cache"),
766
+ "attention_mask": attention_mask,
767
+ }
768
+ )
769
+ return model_inputs
770
+
771
+ @staticmethod
772
+ def _reorder_cache(past_key_values, beam_idx):
773
+ reordered_past = ()
774
+ for layer_past in past_key_values:
775
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
776
+ return reordered_past
777
+
778
+
779
+ @add_start_docstrings(
780
+ """
781
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
782
+
783
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
784
+ (e.g. GPT-2) do.
785
+
786
+ Since it does classification on the last token, it requires to know the position of the last token. If a
787
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
788
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
789
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
790
+ each row of the batch).
791
+ """,
792
+ LLAMA_START_DOCSTRING,
793
+ )
794
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
795
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
796
+
797
+ def __init__(self, config):
798
+ super().__init__(config)
799
+ self.num_labels = config.num_labels
800
+ self.model = LlamaModel(config)
801
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
802
+
803
+ # Initialize weights and apply final processing
804
+ self.post_init()
805
+
806
+ def get_input_embeddings(self):
807
+ return self.model.embed_tokens
808
+
809
+ def set_input_embeddings(self, value):
810
+ self.model.embed_tokens = value
811
+
812
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
813
+ def forward(
814
+ self,
815
+ input_ids: torch.LongTensor = None,
816
+ attention_mask: Optional[torch.Tensor] = None,
817
+ position_ids: Optional[torch.LongTensor] = None,
818
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
819
+ inputs_embeds: Optional[torch.FloatTensor] = None,
820
+ labels: Optional[torch.LongTensor] = None,
821
+ use_cache: Optional[bool] = None,
822
+ output_attentions: Optional[bool] = None,
823
+ output_hidden_states: Optional[bool] = None,
824
+ return_dict: Optional[bool] = None,
825
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
826
+ r"""
827
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
828
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
829
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
830
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
831
+ """
832
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
833
+
834
+ transformer_outputs = self.model(
835
+ input_ids,
836
+ attention_mask=attention_mask,
837
+ position_ids=position_ids,
838
+ past_key_values=past_key_values,
839
+ inputs_embeds=inputs_embeds,
840
+ use_cache=use_cache,
841
+ output_attentions=output_attentions,
842
+ output_hidden_states=output_hidden_states,
843
+ return_dict=return_dict,
844
+ )
845
+ hidden_states = transformer_outputs[0]
846
+ logits = self.score(hidden_states)
847
+
848
+ if input_ids is not None:
849
+ batch_size = input_ids.shape[0]
850
+ else:
851
+ batch_size = inputs_embeds.shape[0]
852
+
853
+ if self.config.pad_token_id is None and batch_size != 1:
854
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
855
+ if self.config.pad_token_id is None:
856
+ sequence_lengths = -1
857
+ else:
858
+ if input_ids is not None:
859
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
860
+ else:
861
+ sequence_lengths = -1
862
+
863
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
864
+
865
+ loss = None
866
+ if labels is not None:
867
+ labels = labels.to(logits.device)
868
+ if self.config.problem_type is None:
869
+ if self.num_labels == 1:
870
+ self.config.problem_type = "regression"
871
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
872
+ self.config.problem_type = "single_label_classification"
873
+ else:
874
+ self.config.problem_type = "multi_label_classification"
875
+
876
+ if self.config.problem_type == "regression":
877
+ loss_fct = MSELoss()
878
+ if self.num_labels == 1:
879
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
880
+ else:
881
+ loss = loss_fct(pooled_logits, labels)
882
+ elif self.config.problem_type == "single_label_classification":
883
+ loss_fct = CrossEntropyLoss()
884
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
885
+ elif self.config.problem_type == "multi_label_classification":
886
+ loss_fct = BCEWithLogitsLoss()
887
+ loss = loss_fct(pooled_logits, labels)
888
+ if not return_dict:
889
+ output = (pooled_logits,) + transformer_outputs[1:]
890
+ return ((loss,) + output) if loss is not None else output
891
+
892
+ return SequenceClassifierOutputWithPast(
893
+ loss=loss,
894
+ logits=pooled_logits,
895
+ past_key_values=transformer_outputs.past_key_values,
896
+ hidden_states=transformer_outputs.hidden_states,
897
+ attentions=transformer_outputs.attentions,
898
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692b9d1418ce0b9b7ec1b7590a79ea0237b4ae822b2856c40a0eb49039b2d4bd
3
+ size 1069788106
special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "pad_token": "<unk>",
10
+ "unk_token": "<unk>"
11
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "legacy": false,
39
+ "model_max_length": 2048,
40
+ "pad_token": "<unk>",
41
+ "padding_side": "right",
42
+ "sp_model_kwargs": {},
43
+ "spaces_between_special_tokens": false,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "tokenizer_file": "/mnt/beegfs/fahad.khan/FastChat/weights/tinyllama_05b/tokenizer.json",
46
+ "unk_token": "<unk>",
47
+ "use_default_system_prompt": false
48
+ }
trainer_state.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.919499105545617,
5
+ "eval_steps": 500,
6
+ "global_step": 102,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 2.86,
13
+ "learning_rate": 2e-05,
14
+ "loss": 0.9902,
15
+ "step": 100
16
+ },
17
+ {
18
+ "epoch": 2.92,
19
+ "step": 102,
20
+ "total_flos": 472843687034880.0,
21
+ "train_loss": 0.9878635780484069,
22
+ "train_runtime": 16261.9174,
23
+ "train_samples_per_second": 26.381,
24
+ "train_steps_per_second": 0.006
25
+ }
26
+ ],
27
+ "logging_steps": 100,
28
+ "max_steps": 102,
29
+ "num_train_epochs": 3,
30
+ "save_steps": 50,
31
+ "total_flos": 472843687034880.0,
32
+ "trial_name": null,
33
+ "trial_params": null
34
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfa75d5e979d55f707cc6b71bc4416762b72b80fc843cf1ba2bd6d5c07e5b227
3
+ size 6840