File size: 5,599 Bytes
d70f677
88ddb71
 
 
d70f677
85315f2
 
88ddb71
 
85315f2
 
 
 
 
 
 
 
88ddb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d70f677
85315f2
 
 
 
 
 
 
 
 
 
 
 
8ed0d61
85315f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ddb71
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
language:
- en
- zh
license: other
datasets:
- Locutusque/UltraTextbooks-2.0
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B/blob/main/LICENSE
inference:
  parameters:
    do_sample: true
    temperature: 0.8
    top_p: 0.95
    top_k: 40
    max_new_tokens: 250
    repetition_penalty: 1.1
model-index:
- name: tau-1.8B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 37.2
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 60.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 45.96
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 39.72
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.09
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.17
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/tau-1.8B
      name: Open LLM Leaderboard
---

# tau-1.8B

## Model Details
- **Model Name:** tau-1.8B
- **Base Model:** Qwen1.5-1.8B
- **Dataset:** UltraTextbooks-2.0
- **Model Size:** 1.8B parameters
- **Model Type:** Language Model
- **Training Procedure:** Further pre-training of Qwen1.5-1.8B on UltraTextbooks-2.0.

## Model Use
tau-1.8B is designed to be a general-purpose language model with enhanced capabilities in the domains of machine learning, mathematics, and coding. It can be used for a wide range of natural language processing tasks, such as:
- Educational question answering
- Text summarization
- Content generation for educational purposes
- Code understanding and generation
- Mathematical problem solving

The model's exposure to the diverse content in the UltraTextbooks-2.0 dataset makes it particularly well-suited for applications in educational technology and research.

## Training Data
tau-1.8B was further pre-trained on the UltraTextbooks-2.0 dataset, which is an expanded version of the original UltraTextbooks dataset. UltraTextbooks-2.0 incorporates additional high-quality synthetic and human-written textbooks from various sources on the Hugging Face platform, with a focus on increasing the diversity of content in the domains of machine learning, mathematics, and coding.

For more details on the dataset, please refer to the [UltraTextbooks-2.0 Dataset Card](https://huggingface.co/datasets/Locutusque/UltraTextbooks-2.0).

## Performance and Limitations
Refer to [Evaluation](##Evaluation) for evaluations. It is essential to note that the model may still exhibit biases or inaccuracies present in the training data. Users are encouraged to critically evaluate the model's outputs and report any issues to facilitate continuous improvement.

## Environmental Impact
The training of tau-1.8B required computational resources that contribute to the model's overall environmental impact. However, efforts were made to optimize the training process and minimize the carbon footprint.

## Ethical Considerations
tau-1.8B was trained on a diverse dataset that may contain biases and inaccuracies. Users should be aware of these potential limitations and use the model responsibly. The model should not be used for tasks that could cause harm or discriminate against individuals or groups.

## Evaluation
|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |45.73|
|AI2 Reasoning Challenge (25-Shot)|37.20|
|HellaSwag (10-Shot)              |60.26|
|MMLU (5-Shot)                    |45.96|
|TruthfulQA (0-shot)              |39.72|
|Winogrande (5-shot)              |61.09|
|GSM8k (5-shot)                   |30.17|