--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bertimbau_large_posneg_2 results: [] --- # bertimbau_large_posneg_2 This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1040 - Precision: 0.5914 - Recall: 0.5587 - F1: 0.5746 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0922 | 2.0040 | 500 | 0.1168 | 0.5548 | 0.5246 | 0.5393 | 0.9517 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1