LaLegumbreArtificial commited on
Commit
a7139a9
1 Parent(s): 4bca98c

End of training

Browse files
Files changed (1) hide show
  1. README.md +9 -5
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9899328859060402
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.0346
35
- - Accuracy: 0.9899
36
 
37
  ## Model description
38
 
@@ -60,13 +60,17 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 1
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:------:|:----:|:---------------:|:--------:|
69
- | 0.0362 | 0.9954 | 162 | 0.0346 | 0.9899 |
 
 
 
 
70
 
71
 
72
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9941275167785235
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0113
35
+ - Accuracy: 0.9941
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:------:|:----:|:---------------:|:--------:|
69
+ | 0.0374 | 0.9954 | 162 | 0.0350 | 0.9866 |
70
+ | 0.0233 | 1.9969 | 325 | 0.0258 | 0.9891 |
71
+ | 0.0253 | 2.9985 | 488 | 0.0188 | 0.9916 |
72
+ | 0.0103 | 4.0 | 651 | 0.0283 | 0.9908 |
73
+ | 0.0065 | 4.9770 | 810 | 0.0113 | 0.9941 |
74
 
75
 
76
  ### Framework versions