File size: 2,170 Bytes
b9cf5e7 a4ad48d b9cf5e7 a4ad48d b9cf5e7 a4ad48d b9cf5e7 a4ad48d b9cf5e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-turkish-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.21101011132672862
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-turkish-colab
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1472
- Wer: 0.2110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.6395 | 0.92 | 100 | 0.1800 | 0.2494 |
| 0.2845 | 1.83 | 200 | 0.1673 | 0.2354 |
| 0.2692 | 2.75 | 300 | 0.1573 | 0.2227 |
| 0.245 | 3.67 | 400 | 0.1568 | 0.2147 |
| 0.2385 | 4.59 | 500 | 0.1533 | 0.2164 |
| 0.2416 | 5.5 | 600 | 0.1502 | 0.2139 |
| 0.2182 | 6.42 | 700 | 0.1507 | 0.2124 |
| 0.2276 | 7.34 | 800 | 0.1472 | 0.2110 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|