KhariotnovKK commited on
Commit
e2fa443
1 Parent(s): edc401e

number of iterations increased to 1mln

Browse files
Luna_lender_kharitonov_1mln.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:082414cea51f2e40e6124fdcd1c272eeb344023201f6d7028a8b8460b292c3b7
3
+ size 144046
Luna_lender_kharitonov_1mln/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Luna_lender_kharitonov_1mln/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d52c10e60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d52c10ef0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d52c10f80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d52b9a050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9d52b9a0e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9d52b9a170>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d52b9a200>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9d52b9a290>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d52b9a320>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d52b9a3b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d52b9a440>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9d52bea480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652638300.7541466,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAABwDz2KCm6z5qPtxbcjbIb1HA7I+6qNgAAgD8AAIA/DdOLvXxHrz8floa+J9Kivryq2b1L33O9AAAAAAAAAABzrIC+6jUKvdqhibxJTfi6QhRwPmH7uTsAAIA/AACAP81qKTzhVJy6k9ZFOEaWOjMCxk04nkdktwAAgD8AAIA/7bwyPva/7D5Ddwm/42xLvpQuiDzOa9C+AAAAAAAAAAAtzxK+coOTPz5U6L3Ra7e+hdShvfX9Zj0AAAAAAAAAAE3dIT2tVxg/7oULviMccr7nhvO82hRjvQAAAAAAAAAAZkQGvvMCOz8OJPY9MGpqvn89uryvzoC9AAAAAAAAAABmbs+7UmrEuwMw1Lsvhbw8CpgYPeaZnb0AAIA/AACAP5qpXzxuYZ0+4q0yPTJPgb4Ig6k8oE8ivQAAAAAAAAAAmtPtPNRbmz8WOko8hh6pvnkrBD2umTC9AAAAAAAAAADzaAE+4P8OPz/9kb5vYp++GBOBvTqVzL0AAAAAAAAAAACq6Tyb7/E9qlTlvTslZ75wy0+8MIPlvAAAAAAAAAAAM6D2PdN/0z7moqy+Cl6fvnYUxL1F5dk8AAAAAAAAAAAzD7E99swnugsMdTGfMEiwWVCNu2ucZjIAAIA/AACAP8a6HL4x7c0+N1WzPSJpTL4r/cm7vvEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOUTcnAqHckCUhpRSlIwBbJRL7owBdJRHQJtk8Y+B6KN1fZQoaAZoCWgPQwhQGJRptKpwQJSGlFKUaBVNGgFoFkdAm2T98ma6SXV9lChoBmgJaA9DCFG7XwX4mGtAlIaUUpRoFU0eAWgWR0CbZTY77sOYdX2UKGgGaAloD0MIPDJWm3+5b0CUhpRSlGgVTVMBaBZHQJtlY6EJ0GN1fZQoaAZoCWgPQwip3hrYqlpwQJSGlFKUaBVNRwFoFkdAm2YPapPykXV9lChoBmgJaA9DCPrVHCCYlm5AlIaUUpRoFU0iAWgWR0CbZoSsKb8WdX2UKGgGaAloD0MIS1mGOFZOb0CUhpRSlGgVTR0BaBZHQJtmvspobn51fZQoaAZoCWgPQwj5hy09mkpvQJSGlFKUaBVNLwFoFkdAm2dwiNbTt3V9lChoBmgJaA9DCJ5flKC/IXFAlIaUUpRoFU1AAWgWR0CbZ9zeGfwrdX2UKGgGaAloD0MIldV0PdFJakCUhpRSlGgVTT0BaBZHQJtpKwaBI4F1fZQoaAZoCWgPQwjNkZVfBqRvQJSGlFKUaBVNxQFoFkdAm2se/gzguXV9lChoBmgJaA9DCEOrkzPUTHFAlIaUUpRoFU1FAWgWR0CbbMxc3VCpdX2UKGgGaAloD0MIS3ZsBOIVbUCUhpRSlGgVTSsBaBZHQJtth7eEZix1fZQoaAZoCWgPQwj2Q2yw8PdvQJSGlFKUaBVNOQFoFkdAm24Le2uxKXV9lChoBmgJaA9DCPda0HvjbXFAlIaUUpRoFU1KAWgWR0CbbmISDh99dX2UKGgGaAloD0MI4/p3feYKckCUhpRSlGgVTRIBaBZHQJtufGLk0aZ1fZQoaAZoCWgPQwgFxCRcSMdxQJSGlFKUaBVNHQFoFkdAm29R1LamGnV9lChoBmgJaA9DCP+xEB2C83FAlIaUUpRoFU0lAWgWR0Cbb26wt8NQdX2UKGgGaAloD0MI3enOE8/GcUCUhpRSlGgVTRgBaBZHQJtwrUNKAax1fZQoaAZoCWgPQwjLoUW2s0lxQJSGlFKUaBVNJwFoFkdAm3Dyr92ovXV9lChoBmgJaA9DCHBBtizfTG9AlIaUUpRoFU1QAWgWR0Cbcd1gpjMFdX2UKGgGaAloD0MIPBHEeTitbUCUhpRSlGgVTSUBaBZHQJtyXu4PPLR1fZQoaAZoCWgPQwgWE5uP68NxQJSGlFKUaBVNOAFoFkdAm3KI42jwhHV9lChoBmgJaA9DCFU01v5OMHBAlIaUUpRoFU1TAWgWR0CbdV9IwudxdX2UKGgGaAloD0MI5C8t6tNrcUCUhpRSlGgVTTIBaBZHQJt2SlANXo11fZQoaAZoCWgPQwhszsEzoZdyQJSGlFKUaBVNBQFoFkdAm3dsMd92HXV9lChoBmgJaA9DCE4rhUCu/GxAlIaUUpRoFU0zAWgWR0CbeBDzRQaadX2UKGgGaAloD0MIJ/kRv+JsbkCUhpRSlGgVTRcBaBZHQJt4k7Omixp1fZQoaAZoCWgPQwgtlbcjXG5xQJSGlFKUaBVNPQFoFkdAm3kwm7aqTHV9lChoBmgJaA9DCLMJMCx/REJAlIaUUpRoFUvraBZHQJt5mqR2bG51fZQoaAZoCWgPQwhLWYY41mVuQJSGlFKUaBVNQgFoFkdAm3tp8OTaCnV9lChoBmgJaA9DCLVug9pvYXBAlIaUUpRoFU1eAWgWR0Cbe37sv7FbdX2UKGgGaAloD0MIgJvFiwWyb0CUhpRSlGgVTUsBaBZHQJt7pRMvh611fZQoaAZoCWgPQwhnDkktlBhyQJSGlFKUaBVNEgFoFkdAm3yxvJiiI3V9lChoBmgJaA9DCNdnzvrULnBAlIaUUpRoFU1GAWgWR0CbfM38n/kvdX2UKGgGaAloD0MInx7bMuD6cUCUhpRSlGgVTScBaBZHQJt859NN8E51fZQoaAZoCWgPQwhpVrYP+RxyQJSGlFKUaBVNQAFoFkdAm35KgM+eOHV9lChoBmgJaA9DCPSLEvQX02xAlIaUUpRoFU3HA2gWR0Cbf1JCSidrdX2UKGgGaAloD0MIMzLIXcQDckCUhpRSlGgVTSEBaBZHQJt/+5QP7N11fZQoaAZoCWgPQwiILxNFCM5yQJSGlFKUaBVNIwFoFkdAm4DqPwNLDnV9lChoBmgJaA9DCABywoTRi21AlIaUUpRoFU0lAWgWR0CbgptxdY4idX2UKGgGaAloD0MIsTbGTjjBcECUhpRSlGgVTREBaBZHQJuC7LcKw6h1fZQoaAZoCWgPQwhOXmQCPlByQJSGlFKUaBVNIQFoFkdAm4LtWluWKXV9lChoBmgJaA9DCHwnZr1Y5nBAlIaUUpRoFU1DAWgWR0Cbgy2NedCmdX2UKGgGaAloD0MIFVYqqOj+cUCUhpRSlGgVTT4BaBZHQJuFCL876pJ1fZQoaAZoCWgPQwiIvVDAtvNyQJSGlFKUaBVNIgFoFkdAm4Wzm0VrRHV9lChoBmgJaA9DCGSw4lRrQUFAlIaUUpRoFU0cAWgWR0Cbhty/sVtXdX2UKGgGaAloD0MImngHeFLfcUCUhpRSlGgVTUYBaBZHQJuHV8c+7lJ1fZQoaAZoCWgPQwi/mC1ZFRJtQJSGlFKUaBVNVQFoFkdAm4fBNZeRgnV9lChoBmgJaA9DCCOFsvB1mmxAlIaUUpRoFU00AWgWR0CbiAC6pYLcdX2UKGgGaAloD0MI2EY82c2bY0CUhpRSlGgVTegDaBZHQJuJDi5uqFR1fZQoaAZoCWgPQwiSByKLNNhvQJSGlFKUaBVNdQFoFkdAm505g9eQdXV9lChoBmgJaA9DCH3KMVncJXBAlIaUUpRoFU1HAWgWR0CbnUzWPLgXdX2UKGgGaAloD0MIMuNtpdeXb0CUhpRSlGgVTSMBaBZHQJudw84gieN1fZQoaAZoCWgPQwjOjlTf+ZpvQJSGlFKUaBVNPgFoFkdAm538J2MbWHV9lChoBmgJaA9DCNeJy/EKem9AlIaUUpRoFU1RAWgWR0CboB2Qnx8VdX2UKGgGaAloD0MIRkHw+LbGcUCUhpRSlGgVTTkBaBZHQJuhQraufVZ1fZQoaAZoCWgPQwgJ+3YSEW1wQJSGlFKUaBVNRAFoFkdAm6FgD/2kBXV9lChoBmgJaA9DCBps6jwqcXBAlIaUUpRoFU0MAWgWR0Cboalf7aZhdX2UKGgGaAloD0MIKXY0DvVrbUCUhpRSlGgVTTkBaBZHQJuj/uF6Avt1fZQoaAZoCWgPQwiUMT7M3g5vQJSGlFKUaBVNoAFoFkdAm6VPE87p3XV9lChoBmgJaA9DCFVQUfUr1W9AlIaUUpRoFU1RAWgWR0Cbplc3EQ5FdX2UKGgGaAloD0MI+YVXknwscUCUhpRSlGgVTTwBaBZHQJumbaM72ct1fZQoaAZoCWgPQwjAd5s3zrNwQJSGlFKUaBVNOgFoFkdAm6adX5nDi3V9lChoBmgJaA9DCEVj7e9sVnFAlIaUUpRoFU1LAWgWR0CbppfShJyydX2UKGgGaAloD0MIDVLwFHKJb0CUhpRSlGgVTSYBaBZHQJum7jm0VrR1fZQoaAZoCWgPQwjNdK+T+shvQJSGlFKUaBVNJwFoFkdAm6gdpAUtZnV9lChoBmgJaA9DCN2ZCYZzaW1AlIaUUpRoFU1FAWgWR0CbqfRvm5lOdX2UKGgGaAloD0MIGJgVivRWckCUhpRSlGgVTVUBaBZHQJuqQmjTKDF1fZQoaAZoCWgPQwgpQX+hx9luQJSGlFKUaBVNHAFoFkdAm6rDeoDPnnV9lChoBmgJaA9DCKMFaFtNfnBAlIaUUpRoFU12AWgWR0CbqspztCzDdX2UKGgGaAloD0MINuohGt3AbkCUhpRSlGgVTSkBaBZHQJusKizsyBV1fZQoaAZoCWgPQwiADB07qN9uQJSGlFKUaBVNMwFoFkdAm6y9CiRGMHV9lChoBmgJaA9DCNUEUfeBE3JAlIaUUpRoFU1fAWgWR0CbrdVzIV/MdX2UKGgGaAloD0MI7Zv7qweDcECUhpRSlGgVTTcBaBZHQJuu+TvAoG91fZQoaAZoCWgPQwisHcU5KntyQJSGlFKUaBVNKQFoFkdAm7CBaHKwIXV9lChoBmgJaA9DCDBinwAKeHFAlIaUUpRoFU0nAWgWR0CbsK8q4H5adX2UKGgGaAloD0MIOSUgJqE4cUCUhpRSlGgVTUcBaBZHQJuwxEYwZfl1fZQoaAZoCWgPQwiEuHL2TuJtQJSGlFKUaBVNNwFoFkdAm7EfczqKQHV9lChoBmgJaA9DCBYW3A94xW9AlIaUUpRoFU1DAWgWR0CbshYlpoK2dX2UKGgGaAloD0MIG5sdqb7ZSkCUhpRSlGgVS+RoFkdAm7In2ZiNKnV9lChoBmgJaA9DCLGGi9xTlmxAlIaUUpRoFU1VAWgWR0CbsmYtg8bJdX2UKGgGaAloD0MIAd9t3vgrcECUhpRSlGgVTV4BaBZHQJu0KwUxmCl1fZQoaAZoCWgPQwh6GFqdHGBuQJSGlFKUaBVNNwFoFkdAm7SgbADaG3V9lChoBmgJaA9DCG/0MR/QCHBAlIaUUpRoFU0yAWgWR0CbtU2kzoECdX2UKGgGaAloD0MIw9UBEHcob0CUhpRSlGgVTUMBaBZHQJu12mNzbN91fZQoaAZoCWgPQwjP9BJjma9xQJSGlFKUaBVNHAFoFkdAm7YOH31zyXV9lChoBmgJaA9DCERRoE9kuW9AlIaUUpRoFU0wAWgWR0Cbtyg7o0Q9dX2UKGgGaAloD0MINZpcjIHYb0CUhpRSlGgVTSkBaBZHQJu3+h37k4p1fZQoaAZoCWgPQwiUha+vdVVjQJSGlFKUaBVN6ANoFkdAm7mDVtoBaXV9lChoBmgJaA9DCBl0QujglnJAlIaUUpRoFU0XAWgWR0CbudjD8+A3dX2UKGgGaAloD0MI1ZXP8jwEbkCUhpRSlGgVTRYBaBZHQJu6ZNh3JPt1fZQoaAZoCWgPQwj8UGnEjDJzQJSGlFKUaBVNHgFoFkdAm7up7w8W9HV9lChoBmgJaA9DCPtcbcU+8XBAlIaUUpRoFU0oAWgWR0Cbu/x8D0UXdX2UKGgGaAloD0MIPUM4ZhlgckCUhpRSlGgVTU4BaBZHQJu8EOYplSV1fZQoaAZoCWgPQwgdc56xb21wQJSGlFKUaBVNXQFoFkdAm7x91IRRM3V9lChoBmgJaA9DCLuX++QoznBAlIaUUpRoFU1EAWgWR0CbvS752yLRdX2UKGgGaAloD0MI8E4+PTYMbECUhpRSlGgVTSwBaBZHQJu+K4NI9Tx1fZQoaAZoCWgPQwjAP6VKFOtxQJSGlFKUaBVNPwFoFkdAm79B0lqrR3V9lChoBmgJaA9DCPNzQ1M2FnFAlIaUUpRoFU0hAWgWR0Cbv7BQvYe1dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Luna_lender_kharitonov_1mln/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1369c9754df8bb57641440e8be413b0f6c354ae44d840cae0f5a26c75695e1
3
+ size 84829
Luna_lender_kharitonov_1mln/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d62d3902a152b6e7aed27e0eaa7b72696d33ca53fdc7bd8026ccb8ba2f3a5821
3
+ size 43201
Luna_lender_kharitonov_1mln/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Luna_lender_kharitonov_1mln/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 235.49 +/- 22.57
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 260.20 +/- 20.71
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faae40034d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae4003560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae40035f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae4003680>", "_build": "<function ActorCriticPolicy._build at 0x7faae4003710>", "forward": "<function ActorCriticPolicy.forward at 0x7faae40037a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae4003830>", "_predict": "<function ActorCriticPolicy._predict at 0x7faae40038c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae4003950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae40039e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae4003a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faae3fca9f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651824017.6213288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPM9Db5DCVg/RIQ4vcSD0765Zei9bX3iPQAAAAAAAAAAAM4OPPZ8WboFKqW6F0GPtXsYUrp3zb05AACAPwAAgD+zVXg9KWh7ul3Mg7tFARs1fzOOOma6jLQAAIA/AACAPzN2X732TEq66F50PC9i3Dhfeby6+lzXNwAAgD8AAIA/5p5sPfa8E7pSXcA6Yna3NTYqMjoW8du5AACAPwAAgD/NZS8+YeiAO9hIgzvZIRs93nHxPNESBDwAAIA/AACAP+CSMT4KYXg8sL3GN/ZBBzYRwwM+h8YDtwAAgD8AAIA/TeITvlF0mz+2VIe+y164vh9Flb6QnZC9AAAAAAAAAAAaG+G9XFNqutmDozzMIYi04zs/OsSBQ7MAAIA/AACAPw1vzb3D9WC6w3GkupTzFbakEgM7KFG8OQAAgD8AAIA/jUX6PXiAvT5Io/69Oew2vqImC76mNNi8AAAAAAAAAAAzmia9KfgtuuJcnTsCpNg34W6Nuors/rUAAIA/AACAP8qFgT6L9DI/43ERPp6lwr76nRU+DlNSPQAAAAAAAAAAerorvvZsHrqqEMQ7cAyLPBqOPLwYR3Y9AACAPwAAgD96bHQ+xY6JPDUVwDpJdhI530wPPvtP67kAAIA/AACAP7PFrr3CGaY/lW5OvhpZsr7PMq29zl3UPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIzDWNzBwZECUhpRSlIwBbJRN6AOMAXSUR0CA448jAzpHdX2UKGgGaAloD0MIoDiAft+//T+UhpRSlGgVS/BoFkdAgPXAjyFwk3V9lChoBmgJaA9DCH3KMVncj1dAlIaUUpRoFU3oA2gWR0CA/jreqJdjdX2UKGgGaAloD0MIAOFDiZYTVECUhpRSlGgVTegDaBZHQIEB+WGATZh1fZQoaAZoCWgPQwjM7snDwsViQJSGlFKUaBVN6ANoFkdAgQl6Lfk3j3V9lChoBmgJaA9DCCwujsrNuWFAlIaUUpRoFU3oA2gWR0CBEBUQTVUddX2UKGgGaAloD0MIdVd2weD7Y0CUhpRSlGgVTegDaBZHQIEvAc7yQPt1fZQoaAZoCWgPQwiE1sOXifozQJSGlFKUaBVL2mgWR0CBMsm78Nx3dX2UKGgGaAloD0MIbHak+s5vWkCUhpRSlGgVTegDaBZHQIE3NPDYRNB1fZQoaAZoCWgPQwhExM2pZGJXQJSGlFKUaBVN6ANoFkdAgUbCRW912nV9lChoBmgJaA9DCJGZC1weT15AlIaUUpRoFU3oA2gWR0CBSDNGmUGFdX2UKGgGaAloD0MIK6ORzyuexr+UhpRSlGgVS7loFkdAgUtJ1JUYK3V9lChoBmgJaA9DCF6+9WG9uSZAlIaUUpRoFUvoaBZHQIFUmz4UN8V1fZQoaAZoCWgPQwgvTRHg9FtRQJSGlFKUaBVN6ANoFkdAgVTnjZL7GnV9lChoBmgJaA9DCEXxKmubGF1AlIaUUpRoFU3oA2gWR0CBWHEcbR4RdX2UKGgGaAloD0MIHv8FggAXZECUhpRSlGgVTegDaBZHQIGarPQfIS11fZQoaAZoCWgPQwhNFYxK6jteQJSGlFKUaBVN6ANoFkdAgZ8dQoCuEHV9lChoBmgJaA9DCOpcUUoIKWFAlIaUUpRoFU3oA2gWR0CBn2W9lEqldX2UKGgGaAloD0MID/CkhcsIW0CUhpRSlGgVTegDaBZHQIGhhCx/ust1fZQoaAZoCWgPQwhCtcGJ6OdeQJSGlFKUaBVN6ANoFkdAgabpv5xionV9lChoBmgJaA9DCBMLfEW31k9AlIaUUpRoFUv7aBZHQIGsoQrc0tR1fZQoaAZoCWgPQwgpJQSr6vlAQJSGlFKUaBVLoWgWR0CBrdwiJO32dX2UKGgGaAloD0MIHHxhMlXPYkCUhpRSlGgVTegDaBZHQIG2zn3cpLF1fZQoaAZoCWgPQwiTUtDtJYlCQJSGlFKUaBVL4mgWR0CBu4RPoFFEdX2UKGgGaAloD0MIPdF14Yd+ZECUhpRSlGgVTegDaBZHQIG9xc5bQkZ1fZQoaAZoCWgPQwjxYmGIHC1kQJSGlFKUaBVN6ANoFkdAgcDMd92HL3V9lChoBmgJaA9DCJqZmZkZsWdAlIaUUpRoFU3oA2gWR0CBxpWMCLdfdX2UKGgGaAloD0MIoDiAft85ZECUhpRSlGgVTegDaBZHQIHtxF7Uoa11fZQoaAZoCWgPQwgzpmCNs7ZgQJSGlFKUaBVN6ANoFkdAgf1bzCk43nV9lChoBmgJaA9DCFlS7j5HrGBAlIaUUpRoFU3oA2gWR0CB/vKdQO4HdX2UKGgGaAloD0MIJclzfZ9RYkCUhpRSlGgVTegDaBZHQIICMnVoYel1fZQoaAZoCWgPQwjOb5hokKhlQJSGlFKUaBVN6ANoFkdAggwaTOgQH3V9lChoBmgJaA9DCKUyxRyEMGFAlIaUUpRoFU3oA2gWR0CCDG2RaHKwdX2UKGgGaAloD0MI3lm77UJnO0CUhpRSlGgVS+JoFkdAglZiExqO93V9lChoBmgJaA9DCAN5dvnWoWJAlIaUUpRoFU3oA2gWR0CCWxJCjUNKdX2UKGgGaAloD0MIrrzkf/IKYUCUhpRSlGgVTegDaBZHQIJbYcinpB51fZQoaAZoCWgPQwgzT64pkKEnwJSGlFKUaBVL02gWR0CCYpVZs9B9dX2UKGgGaAloD0MIaXIxBtbx5b+UhpRSlGgVS9xoFkdAgmOlxOtW/HV9lChoBmgJaA9DCLGGi9xThWFAlIaUUpRoFU3oA2gWR0CCZU2wV0tAdX2UKGgGaAloD0MI0hvuI7fjX0CUhpRSlGgVTegDaBZHQIJr4dMj/uN1fZQoaAZoCWgPQwhQxCKGHQRjQJSGlFKUaBVN6ANoFkdAgm1M2FWXC3V9lChoBmgJaA9DCH7Er1hD9WZAlIaUUpRoFU3oA2gWR0CCd395yEL6dX2UKGgGaAloD0MISS2UTE6ND0CUhpRSlGgVS/NoFkdAgnx9znzQNXV9lChoBmgJaA9DCI+NQLwuUmJAlIaUUpRoFU3oA2gWR0CCfL8stkFwdX2UKGgGaAloD0MIwQKYMvDkYUCUhpRSlGgVTegDaBZHQIJ+6eEqUeN1fZQoaAZoCWgPQwioVfSHZvYuQJSGlFKUaBVL6GgWR0CCgcnl4keIdX2UKGgGaAloD0MIzox+NJz7X0CUhpRSlGgVTegDaBZHQIKB8mQbMot1fZQoaAZoCWgPQwheEJGadsdbQJSGlFKUaBVN6ANoFkdAgodnTZxrBXV9lChoBmgJaA9DCNm0UgjkLjLAlIaUUpRoFUvYaBZHQIKXO2NNrTJ1fZQoaAZoCWgPQwglIvyLoL01QJSGlFKUaBVL62gWR0CCpDJHRTjvdX2UKGgGaAloD0MIEtxI2aJCYkCUhpRSlGgVTegDaBZHQIKr/YUWVNZ1fZQoaAZoCWgPQwhQG9XpQDhIQJSGlFKUaBVLzmgWR0CCs7uG9HtndX2UKGgGaAloD0MIuB0aFiNIYECUhpRSlGgVTegDaBZHQIK6QwsXizd1fZQoaAZoCWgPQwiOOjquxqFmQJSGlFKUaBVN6ANoFkdAgr6qjzqbB3V9lChoBmgJaA9DCJBOXfmsH2RAlIaUUpRoFU3oA2gWR0CC28X+l0o0dX2UKGgGaAloD0MINlfNc8S2ZECUhpRSlGgVTegDaBZHQIMWvKOktVd1fZQoaAZoCWgPQwgMsI9OXUhdQJSGlFKUaBVN6ANoFkdAgx4/h/Aj6nV9lChoBmgJaA9DCKvMlNbfg15AlIaUUpRoFU3oA2gWR0CDIO/X5FgEdX2UKGgGaAloD0MIpbxWQvdKZUCUhpRSlGgVTegDaBZHQIMn5mdy1eB1fZQoaAZoCWgPQwg9f9qoTstkQJSGlFKUaBVN6ANoFkdAgylhF/hESnV9lChoBmgJaA9DCNttF5rrAV9AlIaUUpRoFU3oA2gWR0CDNEdVea8ZdX2UKGgGaAloD0MIMsnIWdjYYUCUhpRSlGgVTegDaBZHQIM5YxDb8FZ1fZQoaAZoCWgPQwhslWBxONliQJSGlFKUaBVN6ANoFkdAgzmhv73wkXV9lChoBmgJaA9DCP/qcd9qDGFAlIaUUpRoFU3oA2gWR0CDPx8zhxYJdX2UKGgGaAloD0MIMsaH2cu6YECUhpRSlGgVTegDaBZHQIM/Tk+5e7d1fZQoaAZoCWgPQwhorz4e+tY/QJSGlFKUaBVL22gWR0CDVfUxVQyidX2UKGgGaAloD0MIvVMB9zwnLcCUhpRSlGgVS8xoFkdAg1piuMdcS3V9lChoBmgJaA9DCHVZTGw+tidAlIaUUpRoFUvhaBZHQINd78xbjcV1fZQoaAZoCWgPQwgZOKClq3xgQJSGlFKUaBVN6ANoFkdAg2cTOxB3R3V9lChoBmgJaA9DCFYL7DGRamRAlIaUUpRoFU3oA2gWR0CDbvxNqQA/dX2UKGgGaAloD0MIhlj9EYbTVUCUhpRSlGgVTegDaBZHQIN2boMa0hN1fZQoaAZoCWgPQwjhzoWR3l5kQJSGlFKUaBVN6ANoFkdAg3xxF7Uoa3V9lChoBmgJaA9DCKhwBKkUwWNAlIaUUpRoFU3oA2gWR0CDgKRGMGX5dX2UKGgGaAloD0MIPWTKh6CiJUCUhpRSlGgVS/9oFkdAg4EPNVzZH3V9lChoBmgJaA9DCF3cRgN4ZVxAlIaUUpRoFU3oA2gWR0CDmzoaDPGAdX2UKGgGaAloD0MIb2b0o+HVYUCUhpRSlGgVTegDaBZHQIOfhxLkCFN1fZQoaAZoCWgPQwjmQA+1bXhBQJSGlFKUaBVL62gWR0CDoEbSZ0CBdX2UKGgGaAloD0MI7X+AtWqsX0CUhpRSlGgVTegDaBZHQIPcr/Khcqx1fZQoaAZoCWgPQwjzGyYapLljQJSGlFKUaBVN6ANoFkdAg97/MW43FXV9lChoBmgJaA9DCPfHe9XK12VAlIaUUpRoFU3oA2gWR0CD5VfAKv3bdX2UKGgGaAloD0MIE/QXesRgYUCUhpRSlGgVTegDaBZHQIPmtvqC6H11fZQoaAZoCWgPQwgtliL5yoNhQJSGlFKUaBVN6ANoFkdAg/DKVhTfi3V9lChoBmgJaA9DCILF4cwvZWVAlIaUUpRoFU3oA2gWR0CD9a2NvOyFdX2UKGgGaAloD0MI3/lFCfprEsCUhpRSlGgVS8xoFkdAg/jpG4I8hnV9lChoBmgJaA9DCMYUrHE2/0NAlIaUUpRoFUuvaBZHQIQSgWnCO3l1fZQoaAZoCWgPQwikwthCEAxiQJSGlFKUaBVN6ANoFkdAhBUSFPBSDXV9lChoBmgJaA9DCML6P4f5Al9AlIaUUpRoFU3oA2gWR0CEGUd1+y7gdX2UKGgGaAloD0MI6zao/dbqZkCUhpRSlGgVTegDaBZHQIQk3epGWld1fZQoaAZoCWgPQwiYofFEkA5gQJSGlFKUaBVN6ANoFkdAhCxzd+G47XV9lChoBmgJaA9DCA3/6QYKHA1AlIaUUpRoFUvYaBZHQIQwgmCyyD91fZQoaAZoCWgPQwg9Kv7viOImQJSGlFKUaBVL22gWR0CEMzOmixmkdX2UKGgGaAloD0MIy2Wjc/4JY0CUhpRSlGgVTegDaBZHQIQzvYUWVNZ1fZQoaAZoCWgPQwg2dLM/UJJgQJSGlFKUaBVN6ANoFkdAhDljzAeq73V9lChoBmgJaA9DCCwoDMq0T2VAlIaUUpRoFU3oA2gWR0CEPVpX6qKhdX2UKGgGaAloD0MIMuiE0EH5SUCUhpRSlGgVS8NoFkdAhD37cO9WZXV9lChoBmgJaA9DCMb7cfvlox7AlIaUUpRoFUvgaBZHQIRL9MfzSTh1fZQoaAZoCWgPQwgzox8Np59RQJSGlFKUaBVNAAFoFkdAhFMmOdXkpHV9lChoBmgJaA9DCALU1LK1IWNAlIaUUpRoFU3oA2gWR0CEVzZFocrBdX2UKGgGaAloD0MIdJmaBO/yYkCUhpRSlGgVTegDaBZHQIRbG4smOVB1fZQoaAZoCWgPQwh8fhghvEZkQJSGlFKUaBVN6ANoFkdAhFvAeq7yx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d52c10e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d52c10ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d52c10f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d52b9a050>", "_build": "<function ActorCriticPolicy._build at 0x7f9d52b9a0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d52b9a170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d52b9a200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d52b9a290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d52b9a320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d52b9a3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d52b9a440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d52bea480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652638300.7541466, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAABwDz2KCm6z5qPtxbcjbIb1HA7I+6qNgAAgD8AAIA/DdOLvXxHrz8floa+J9Kivryq2b1L33O9AAAAAAAAAABzrIC+6jUKvdqhibxJTfi6QhRwPmH7uTsAAIA/AACAP81qKTzhVJy6k9ZFOEaWOjMCxk04nkdktwAAgD8AAIA/7bwyPva/7D5Ddwm/42xLvpQuiDzOa9C+AAAAAAAAAAAtzxK+coOTPz5U6L3Ra7e+hdShvfX9Zj0AAAAAAAAAAE3dIT2tVxg/7oULviMccr7nhvO82hRjvQAAAAAAAAAAZkQGvvMCOz8OJPY9MGpqvn89uryvzoC9AAAAAAAAAABmbs+7UmrEuwMw1Lsvhbw8CpgYPeaZnb0AAIA/AACAP5qpXzxuYZ0+4q0yPTJPgb4Ig6k8oE8ivQAAAAAAAAAAmtPtPNRbmz8WOko8hh6pvnkrBD2umTC9AAAAAAAAAADzaAE+4P8OPz/9kb5vYp++GBOBvTqVzL0AAAAAAAAAAACq6Tyb7/E9qlTlvTslZ75wy0+8MIPlvAAAAAAAAAAAM6D2PdN/0z7moqy+Cl6fvnYUxL1F5dk8AAAAAAAAAAAzD7E99swnugsMdTGfMEiwWVCNu2ucZjIAAIA/AACAP8a6HL4x7c0+N1WzPSJpTL4r/cm7vvEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOUTcnAqHckCUhpRSlIwBbJRL7owBdJRHQJtk8Y+B6KN1fZQoaAZoCWgPQwhQGJRptKpwQJSGlFKUaBVNGgFoFkdAm2T98ma6SXV9lChoBmgJaA9DCFG7XwX4mGtAlIaUUpRoFU0eAWgWR0CbZTY77sOYdX2UKGgGaAloD0MIPDJWm3+5b0CUhpRSlGgVTVMBaBZHQJtlY6EJ0GN1fZQoaAZoCWgPQwip3hrYqlpwQJSGlFKUaBVNRwFoFkdAm2YPapPykXV9lChoBmgJaA9DCPrVHCCYlm5AlIaUUpRoFU0iAWgWR0CbZoSsKb8WdX2UKGgGaAloD0MIS1mGOFZOb0CUhpRSlGgVTR0BaBZHQJtmvspobn51fZQoaAZoCWgPQwj5hy09mkpvQJSGlFKUaBVNLwFoFkdAm2dwiNbTt3V9lChoBmgJaA9DCJ5flKC/IXFAlIaUUpRoFU1AAWgWR0CbZ9zeGfwrdX2UKGgGaAloD0MIldV0PdFJakCUhpRSlGgVTT0BaBZHQJtpKwaBI4F1fZQoaAZoCWgPQwjNkZVfBqRvQJSGlFKUaBVNxQFoFkdAm2se/gzguXV9lChoBmgJaA9DCEOrkzPUTHFAlIaUUpRoFU1FAWgWR0CbbMxc3VCpdX2UKGgGaAloD0MIS3ZsBOIVbUCUhpRSlGgVTSsBaBZHQJtth7eEZix1fZQoaAZoCWgPQwj2Q2yw8PdvQJSGlFKUaBVNOQFoFkdAm24Le2uxKXV9lChoBmgJaA9DCPda0HvjbXFAlIaUUpRoFU1KAWgWR0CbbmISDh99dX2UKGgGaAloD0MI4/p3feYKckCUhpRSlGgVTRIBaBZHQJtufGLk0aZ1fZQoaAZoCWgPQwgFxCRcSMdxQJSGlFKUaBVNHQFoFkdAm29R1LamGnV9lChoBmgJaA9DCP+xEB2C83FAlIaUUpRoFU0lAWgWR0Cbb26wt8NQdX2UKGgGaAloD0MI3enOE8/GcUCUhpRSlGgVTRgBaBZHQJtwrUNKAax1fZQoaAZoCWgPQwjLoUW2s0lxQJSGlFKUaBVNJwFoFkdAm3Dyr92ovXV9lChoBmgJaA9DCHBBtizfTG9AlIaUUpRoFU1QAWgWR0Cbcd1gpjMFdX2UKGgGaAloD0MIPBHEeTitbUCUhpRSlGgVTSUBaBZHQJtyXu4PPLR1fZQoaAZoCWgPQwgWE5uP68NxQJSGlFKUaBVNOAFoFkdAm3KI42jwhHV9lChoBmgJaA9DCFU01v5OMHBAlIaUUpRoFU1TAWgWR0CbdV9IwudxdX2UKGgGaAloD0MI5C8t6tNrcUCUhpRSlGgVTTIBaBZHQJt2SlANXo11fZQoaAZoCWgPQwhszsEzoZdyQJSGlFKUaBVNBQFoFkdAm3dsMd92HXV9lChoBmgJaA9DCE4rhUCu/GxAlIaUUpRoFU0zAWgWR0CbeBDzRQaadX2UKGgGaAloD0MIJ/kRv+JsbkCUhpRSlGgVTRcBaBZHQJt4k7Omixp1fZQoaAZoCWgPQwgtlbcjXG5xQJSGlFKUaBVNPQFoFkdAm3kwm7aqTHV9lChoBmgJaA9DCLMJMCx/REJAlIaUUpRoFUvraBZHQJt5mqR2bG51fZQoaAZoCWgPQwhLWYY41mVuQJSGlFKUaBVNQgFoFkdAm3tp8OTaCnV9lChoBmgJaA9DCLVug9pvYXBAlIaUUpRoFU1eAWgWR0Cbe37sv7FbdX2UKGgGaAloD0MIgJvFiwWyb0CUhpRSlGgVTUsBaBZHQJt7pRMvh611fZQoaAZoCWgPQwhnDkktlBhyQJSGlFKUaBVNEgFoFkdAm3yxvJiiI3V9lChoBmgJaA9DCNdnzvrULnBAlIaUUpRoFU1GAWgWR0CbfM38n/kvdX2UKGgGaAloD0MInx7bMuD6cUCUhpRSlGgVTScBaBZHQJt859NN8E51fZQoaAZoCWgPQwhpVrYP+RxyQJSGlFKUaBVNQAFoFkdAm35KgM+eOHV9lChoBmgJaA9DCPSLEvQX02xAlIaUUpRoFU3HA2gWR0Cbf1JCSidrdX2UKGgGaAloD0MIMzLIXcQDckCUhpRSlGgVTSEBaBZHQJt/+5QP7N11fZQoaAZoCWgPQwiILxNFCM5yQJSGlFKUaBVNIwFoFkdAm4DqPwNLDnV9lChoBmgJaA9DCABywoTRi21AlIaUUpRoFU0lAWgWR0CbgptxdY4idX2UKGgGaAloD0MIsTbGTjjBcECUhpRSlGgVTREBaBZHQJuC7LcKw6h1fZQoaAZoCWgPQwhOXmQCPlByQJSGlFKUaBVNIQFoFkdAm4LtWluWKXV9lChoBmgJaA9DCHwnZr1Y5nBAlIaUUpRoFU1DAWgWR0Cbgy2NedCmdX2UKGgGaAloD0MIFVYqqOj+cUCUhpRSlGgVTT4BaBZHQJuFCL876pJ1fZQoaAZoCWgPQwiIvVDAtvNyQJSGlFKUaBVNIgFoFkdAm4Wzm0VrRHV9lChoBmgJaA9DCGSw4lRrQUFAlIaUUpRoFU0cAWgWR0Cbhty/sVtXdX2UKGgGaAloD0MImngHeFLfcUCUhpRSlGgVTUYBaBZHQJuHV8c+7lJ1fZQoaAZoCWgPQwi/mC1ZFRJtQJSGlFKUaBVNVQFoFkdAm4fBNZeRgnV9lChoBmgJaA9DCCOFsvB1mmxAlIaUUpRoFU00AWgWR0CbiAC6pYLcdX2UKGgGaAloD0MI2EY82c2bY0CUhpRSlGgVTegDaBZHQJuJDi5uqFR1fZQoaAZoCWgPQwiSByKLNNhvQJSGlFKUaBVNdQFoFkdAm505g9eQdXV9lChoBmgJaA9DCH3KMVncJXBAlIaUUpRoFU1HAWgWR0CbnUzWPLgXdX2UKGgGaAloD0MIMuNtpdeXb0CUhpRSlGgVTSMBaBZHQJudw84gieN1fZQoaAZoCWgPQwjOjlTf+ZpvQJSGlFKUaBVNPgFoFkdAm538J2MbWHV9lChoBmgJaA9DCNeJy/EKem9AlIaUUpRoFU1RAWgWR0CboB2Qnx8VdX2UKGgGaAloD0MIRkHw+LbGcUCUhpRSlGgVTTkBaBZHQJuhQraufVZ1fZQoaAZoCWgPQwgJ+3YSEW1wQJSGlFKUaBVNRAFoFkdAm6FgD/2kBXV9lChoBmgJaA9DCBps6jwqcXBAlIaUUpRoFU0MAWgWR0Cboalf7aZhdX2UKGgGaAloD0MIKXY0DvVrbUCUhpRSlGgVTTkBaBZHQJuj/uF6Avt1fZQoaAZoCWgPQwiUMT7M3g5vQJSGlFKUaBVNoAFoFkdAm6VPE87p3XV9lChoBmgJaA9DCFVQUfUr1W9AlIaUUpRoFU1RAWgWR0Cbplc3EQ5FdX2UKGgGaAloD0MI+YVXknwscUCUhpRSlGgVTTwBaBZHQJumbaM72ct1fZQoaAZoCWgPQwjAd5s3zrNwQJSGlFKUaBVNOgFoFkdAm6adX5nDi3V9lChoBmgJaA9DCEVj7e9sVnFAlIaUUpRoFU1LAWgWR0CbppfShJyydX2UKGgGaAloD0MIDVLwFHKJb0CUhpRSlGgVTSYBaBZHQJum7jm0VrR1fZQoaAZoCWgPQwjNdK+T+shvQJSGlFKUaBVNJwFoFkdAm6gdpAUtZnV9lChoBmgJaA9DCN2ZCYZzaW1AlIaUUpRoFU1FAWgWR0CbqfRvm5lOdX2UKGgGaAloD0MIGJgVivRWckCUhpRSlGgVTVUBaBZHQJuqQmjTKDF1fZQoaAZoCWgPQwgpQX+hx9luQJSGlFKUaBVNHAFoFkdAm6rDeoDPnnV9lChoBmgJaA9DCKMFaFtNfnBAlIaUUpRoFU12AWgWR0CbqspztCzDdX2UKGgGaAloD0MINuohGt3AbkCUhpRSlGgVTSkBaBZHQJusKizsyBV1fZQoaAZoCWgPQwiADB07qN9uQJSGlFKUaBVNMwFoFkdAm6y9CiRGMHV9lChoBmgJaA9DCNUEUfeBE3JAlIaUUpRoFU1fAWgWR0CbrdVzIV/MdX2UKGgGaAloD0MI7Zv7qweDcECUhpRSlGgVTTcBaBZHQJuu+TvAoG91fZQoaAZoCWgPQwisHcU5KntyQJSGlFKUaBVNKQFoFkdAm7CBaHKwIXV9lChoBmgJaA9DCDBinwAKeHFAlIaUUpRoFU0nAWgWR0CbsK8q4H5adX2UKGgGaAloD0MIOSUgJqE4cUCUhpRSlGgVTUcBaBZHQJuwxEYwZfl1fZQoaAZoCWgPQwiEuHL2TuJtQJSGlFKUaBVNNwFoFkdAm7EfczqKQHV9lChoBmgJaA9DCBYW3A94xW9AlIaUUpRoFU1DAWgWR0CbshYlpoK2dX2UKGgGaAloD0MIG5sdqb7ZSkCUhpRSlGgVS+RoFkdAm7In2ZiNKnV9lChoBmgJaA9DCLGGi9xTlmxAlIaUUpRoFU1VAWgWR0CbsmYtg8bJdX2UKGgGaAloD0MIAd9t3vgrcECUhpRSlGgVTV4BaBZHQJu0KwUxmCl1fZQoaAZoCWgPQwh6GFqdHGBuQJSGlFKUaBVNNwFoFkdAm7SgbADaG3V9lChoBmgJaA9DCG/0MR/QCHBAlIaUUpRoFU0yAWgWR0CbtU2kzoECdX2UKGgGaAloD0MIw9UBEHcob0CUhpRSlGgVTUMBaBZHQJu12mNzbN91fZQoaAZoCWgPQwjP9BJjma9xQJSGlFKUaBVNHAFoFkdAm7YOH31zyXV9lChoBmgJaA9DCERRoE9kuW9AlIaUUpRoFU0wAWgWR0Cbtyg7o0Q9dX2UKGgGaAloD0MINZpcjIHYb0CUhpRSlGgVTSkBaBZHQJu3+h37k4p1fZQoaAZoCWgPQwiUha+vdVVjQJSGlFKUaBVN6ANoFkdAm7mDVtoBaXV9lChoBmgJaA9DCBl0QujglnJAlIaUUpRoFU0XAWgWR0CbudjD8+A3dX2UKGgGaAloD0MI1ZXP8jwEbkCUhpRSlGgVTRYBaBZHQJu6ZNh3JPt1fZQoaAZoCWgPQwj8UGnEjDJzQJSGlFKUaBVNHgFoFkdAm7up7w8W9HV9lChoBmgJaA9DCPtcbcU+8XBAlIaUUpRoFU0oAWgWR0Cbu/x8D0UXdX2UKGgGaAloD0MIPUM4ZhlgckCUhpRSlGgVTU4BaBZHQJu8EOYplSV1fZQoaAZoCWgPQwgdc56xb21wQJSGlFKUaBVNXQFoFkdAm7x91IRRM3V9lChoBmgJaA9DCLuX++QoznBAlIaUUpRoFU1EAWgWR0CbvS752yLRdX2UKGgGaAloD0MI8E4+PTYMbECUhpRSlGgVTSwBaBZHQJu+K4NI9Tx1fZQoaAZoCWgPQwjAP6VKFOtxQJSGlFKUaBVNPwFoFkdAm79B0lqrR3V9lChoBmgJaA9DCPNzQ1M2FnFAlIaUUpRoFU0hAWgWR0Cbv7BQvYe1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1bcf7103fd8e93eb1e4e7bc15ed472b68accda6c011e004f8e2426985b9a9297
3
- size 248908
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f123eaf984bfebda0ff385f00ea962b17f5648e10014429f2520968891338d0
3
+ size 245516
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 235.48564825664735, "std_reward": 22.568907513806945, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T08:39:05.822875"}
 
1
+ {"mean_reward": 260.20054384667594, "std_reward": 20.712573286994957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T18:37:18.474090"}