Update README.md
Browse files
README.md
CHANGED
@@ -7,10 +7,182 @@ language:
|
|
7 |
<summary>
|
8 |
TinyBERT based model
|
9 |
</summary>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
</details>
|
11 |
|
12 |
<details>
|
13 |
<summary>RoBERT based model</summary>
|
|
|
|
|
14 |
```python
|
15 |
import torch
|
16 |
from torch.utils.data import DataLoader, Dataset
|
@@ -22,14 +194,22 @@ import pandas as pd
|
|
22 |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
23 |
|
24 |
# Load RoBERTa pre-trained model
|
25 |
-
model = RobertaForSequenceClassification.from_pretrained('
|
26 |
-
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
```
|
32 |
|
|
|
33 |
```python
|
34 |
|
35 |
def predict_description(model, tokenizer, text, max_length=512):
|
|
|
7 |
<summary>
|
8 |
TinyBERT based model
|
9 |
</summary>
|
10 |
+
|
11 |
+
### Fetching the model
|
12 |
+
```python
|
13 |
+
# Load the TinyBERT tokenizer and model
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D', num_labels=2)
|
16 |
+
|
17 |
+
# fetch the statedict to apply the fine-tuned weights
|
18 |
+
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin")
|
19 |
+
# if running on cpu
|
20 |
+
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin", map_location=torch.device('cpu'))
|
21 |
+
|
22 |
+
model.load_state_dict(state_dict)
|
23 |
+
|
24 |
+
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
25 |
+
|
26 |
+
```
|
27 |
+
|
28 |
+
|
29 |
+
### Using the model
|
30 |
+
|
31 |
+
```python
|
32 |
+
def predict_description(model, tokenizer, text, max_length=512):
|
33 |
+
model.eval() # Set the model to evaluation mode
|
34 |
+
|
35 |
+
# Ensure model is on the correct device
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
model = model.to(device)
|
38 |
+
|
39 |
+
# Encode the input text
|
40 |
+
inputs = tokenizer.encode_plus(
|
41 |
+
text,
|
42 |
+
None,
|
43 |
+
add_special_tokens=True,
|
44 |
+
max_length=max_length,
|
45 |
+
padding='max_length',
|
46 |
+
return_token_type_ids=False,
|
47 |
+
return_tensors='pt',
|
48 |
+
truncation=True
|
49 |
+
)
|
50 |
+
|
51 |
+
# Move tensors to the correct device
|
52 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
53 |
+
|
54 |
+
# Make prediction
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model(**inputs)
|
57 |
+
logits = outputs.logits
|
58 |
+
probabilities = torch.softmax(logits, dim=-1)
|
59 |
+
predicted_class_id = torch.argmax(probabilities, dim=-1).item()
|
60 |
+
|
61 |
+
return predicted_class_id, probabilities.cpu().tolist()
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
#Example usage
|
66 |
+
|
67 |
+
tickets = [
|
68 |
+
"""Inquiry about the possibility of customizing Docker to better meet department-specific needs.
|
69 |
+
Gathered requirements for desired customizations.""",
|
70 |
+
"""We've encountered a recurring problem with DEVEnv shutting down anytime we try to save documents.
|
71 |
+
I looked over the error logs for any clues about what's going wrong. I'm passing this on to the team responsible for software upkeep."""
|
72 |
+
]
|
73 |
+
|
74 |
+
for i, row in df.sample(frac=0.01).iterrows():
|
75 |
+
prediction, probabilities = predict_description(model, tokenizer, row['content'])
|
76 |
+
prediction = (['INCIDENT', 'TASK'])[prediction]
|
77 |
+
print(f"{prediction} ({probabilities}) <== {row['content']}")
|
78 |
+
```
|
79 |
+
|
80 |
+
### Additional fine-tuning
|
81 |
+
|
82 |
+
```python
|
83 |
+
|
84 |
+
# The dataset class
|
85 |
+
class TextDataset(Dataset):
|
86 |
+
def __init__(self, descriptions, labels, tokenizer, max_len):
|
87 |
+
self.descriptions = descriptions
|
88 |
+
self.labels = labels
|
89 |
+
self.tokenizer = tokenizer
|
90 |
+
self.max_len = max_len
|
91 |
+
|
92 |
+
def __len__(self):
|
93 |
+
return len(self.descriptions)
|
94 |
+
|
95 |
+
def __getitem__(self, idx):
|
96 |
+
text = self.descriptions[idx]
|
97 |
+
inputs = self.tokenizer.encode_plus(
|
98 |
+
text,
|
99 |
+
None,
|
100 |
+
add_special_tokens=True,
|
101 |
+
max_length=self.max_len,
|
102 |
+
padding='max_length',
|
103 |
+
return_token_type_ids=False,
|
104 |
+
truncation=True
|
105 |
+
)
|
106 |
+
return {
|
107 |
+
'input_ids': torch.tensor(inputs['input_ids'], dtype=torch.long),
|
108 |
+
'attention_mask': torch.tensor(inputs['attention_mask'], dtype=torch.long),
|
109 |
+
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
|
110 |
+
}
|
111 |
+
|
112 |
+
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
113 |
+
# load the data
|
114 |
+
df = pd.read_csv('..\\data\\final_data.csv')
|
115 |
+
df['label'] = df['type'].astype('category').cat.codes # Convert labels to category codes if they aren't already
|
116 |
+
|
117 |
+
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
118 |
+
# create the training and validation sets and data loaders
|
119 |
+
print( "cuda is available" if torch.cuda.is_available() else "cuda is unavailable: running on cpu")
|
120 |
+
|
121 |
+
# Split the data into training and validation sets
|
122 |
+
train_df, val_df = train_test_split(df, test_size=0.15)
|
123 |
+
|
124 |
+
# Create PyTorch datasets
|
125 |
+
train_dataset = TextDataset(train_df['content'].tolist(), train_df['label'].tolist(), tokenizer, max_len=512)
|
126 |
+
val_dataset = TextDataset(val_df['content'].tolist(), val_df['label'].tolist(), tokenizer, max_len=512)
|
127 |
+
|
128 |
+
# Create data loaders
|
129 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
130 |
+
val_loader = DataLoader(val_dataset, batch_size=32)
|
131 |
+
|
132 |
+
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
133 |
+
# Train the model
|
134 |
+
|
135 |
+
# only these layers will be trained, customize this to your liking to freeze the ones you dont want to retrain
|
136 |
+
training_layers = [
|
137 |
+
"bert.encoder.layer.3.output.dense.weight",
|
138 |
+
"bert.encoder.layer.3.output.dense.bias",
|
139 |
+
"bert.encoder.layer.3.output.LayerNorm.weight",
|
140 |
+
"bert.encoder.layer.3.output.LayerNorm.bias",
|
141 |
+
"bert.pooler.dense.weight",
|
142 |
+
"bert.pooler.dense.bias",
|
143 |
+
"classifier.weight",
|
144 |
+
"classifier.bias",
|
145 |
+
]
|
146 |
+
|
147 |
+
for name, param in model.named_parameters():
|
148 |
+
if name not in training_layers: # Freeze layers that are not part of the classifier
|
149 |
+
param.requires_grad = False
|
150 |
+
|
151 |
+
# Training setup
|
152 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
153 |
+
epochs = 2
|
154 |
+
|
155 |
+
for epoch in range(epochs):
|
156 |
+
model.train()
|
157 |
+
loss_item = float('+inf')
|
158 |
+
for batch in tqdm(train_loader, desc=f"Training Loss: {loss_item}"):
|
159 |
+
batch = {k: v.to(model.device) for k, v in batch.items()}
|
160 |
+
outputs = model(**batch)
|
161 |
+
loss = outputs.loss
|
162 |
+
loss.backward()
|
163 |
+
optimizer.step()
|
164 |
+
optimizer.zero_grad()
|
165 |
+
loss_item = loss.item()
|
166 |
+
|
167 |
+
model.eval()
|
168 |
+
total_eval_accuracy = 0
|
169 |
+
for batch in tqdm(val_loader, desc=f"Validation Accuracy: {total_eval_accuracy}"):
|
170 |
+
batch = {k: v.to(model.device) for k, v in batch.items()}
|
171 |
+
with torch.no_grad():
|
172 |
+
outputs = model(**batch)
|
173 |
+
logits = outputs.logits
|
174 |
+
predictions = torch.argmax(logits, dim=-1)
|
175 |
+
accuracy = (predictions == batch['labels']).cpu().numpy().mean()
|
176 |
+
total_eval_accuracy += accuracy
|
177 |
+
|
178 |
+
print(f"Validation Accuracy: {total_eval_accuracy / len(val_loader)}")
|
179 |
+
```
|
180 |
</details>
|
181 |
|
182 |
<details>
|
183 |
<summary>RoBERT based model</summary>
|
184 |
+
|
185 |
+
### Base model
|
186 |
```python
|
187 |
import torch
|
188 |
from torch.utils.data import DataLoader, Dataset
|
|
|
194 |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
195 |
|
196 |
# Load RoBERTa pre-trained model
|
197 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
|
|
198 |
|
199 |
|
200 |
+
# fetch the statedict to apply the fine-tuned weights
|
201 |
+
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin")
|
202 |
+
# if running on cpu
|
203 |
+
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin", map_location=torch.device('cpu'))
|
204 |
+
|
205 |
+
model.load_state_dict(state_dict)
|
206 |
+
|
207 |
+
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
208 |
|
209 |
|
210 |
```
|
211 |
|
212 |
+
### Use model to make predictions
|
213 |
```python
|
214 |
|
215 |
def predict_description(model, tokenizer, text, max_length=512):
|