import re import numpy as np from tokenizer import ChatGLMTokenizer # import torch from onnxruntime import InferenceSession, SessionOptions # Currently `MatMulInteger` and `DynamicQuantizeLinear` are only supported on CPU, # although they are documented as supported on CUDA. providers = ["CPUExecutionProvider"] # if torch.cuda.is_available(): # providers = ["CUDAExecutionProvider"] + providers # Default paths tokenizer_path = "chatglm-6b-int8-onnx-merged/sentencepiece.model" onnx_model_path = "chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx" # input & output names past_names = [f"past_{name}_{i}" for i in range(28) for name in ["key", "value"]] present_names = [f"present_{name}_{i}" for i in range(28) for name in ["key", "value"]] output_names = ["logits"] + present_names # default kv_cache for first inference default_past_key_values = { k: np.zeros((1, 0, 32, 128), dtype=np.float32) for k in past_names } def chat_template(history: list[tuple[str, str]], current: str): prompt = "" chat_round = 0 for question, answer in history: prompt += f"[Round {chat_round}]\n问:{question}\n答:{answer}\n" chat_round += 1 prompt += f"[Round {chat_round}]\n问:{current}\n答:" return prompt def process_response(response: str): response = response.strip() response = response.replace("[[训练时间]]", "2023年") punkts = [ [",", ","], ["!", "!"], [":", ":"], [";", ";"], ["\?", "?"], ] for item in punkts: response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response) response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response) return response class ChatGLMModel(): def __init__(self, onnx_model_path=onnx_model_path, tokenizer_path=tokenizer_path, profile=False) -> None: self.tokenizer = ChatGLMTokenizer(tokenizer_path) options = SessionOptions() options.enable_profiling = profile self.session = InferenceSession(onnx_model_path, options, providers=providers) self.eop_token_id = self.tokenizer[""] def prepare_input(self, prompt: str): input_ids, prefix_mask = self.tokenizer.encode(prompt) input_ids = np.array([input_ids], dtype=np.longlong) prefix_mask = np.array([prefix_mask], dtype=np.longlong) return input_ids, prefix_mask, default_past_key_values def sample_next_token(self, logits: np.ndarray, top_k=50, top_p=0.7, temperature=1): # softmax with temperature exp_logits = np.exp(logits / temperature) probs = exp_logits / np.sum(exp_logits) # top k top_k_idx = np.argsort(-probs)[:top_k] top_k_probs = probs[top_k_idx] # top p cumsum_probs = np.cumsum(top_k_probs) top_k_probs[(cumsum_probs - top_k_probs) > top_p] = 0.0 top_k_probs = top_k_probs / np.sum(top_k_probs) # sample next_token = np.random.choice(top_k_idx, size=1, p=top_k_probs) return next_token[0].item() def generate_iterate(self, prompt: str, max_generated_tokens=100, top_k=50, top_p=0.7, temperature=1): input_ids, prefix_mask, past_key_values = self.prepare_input(prompt) output_tokens = [] while True: inputs = { "input_ids": input_ids, "prefix_mask": prefix_mask, "use_past": np.array(len(output_tokens) > 0), } inputs.update(past_key_values) logits, *past_key_values = self.session.run(output_names, inputs) past_key_values = { k: v for k, v in zip(past_names, past_key_values) } next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature) output_tokens += [next_token] if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens: break input_ids = np.array([[next_token]], dtype=np.longlong) prefix_mask = np.concatenate([prefix_mask, np.array([[0]], dtype=np.longlong)], axis=1) yield process_response(self.tokenizer.decode(output_tokens)) return process_response(self.tokenizer.decode(output_tokens))