--- base_model: mamba_0_75_dpo_ep1 tags: - mamba - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: mamba_0_75_dpo_ep1 results: [] --- Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details. # mamba_0_75_dpo_ep1 This model is a fine-tuned version of [JunxiongWang/mamba_0_75_sft](https://huggingface.co/JunxiongWang/mamba_0_75_sft) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1 [MambaInLlama](arxiv.org/abs/2408.15237) ``` @article{junxiongdaniele2024mambainllama, title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models}, author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao}, journal = {arXiv preprint arXiv:2408.15237}, year = {2024} } ```