Qwen-LLaMAfied-7B-Chat / tokenization_qwen.py
JosephusCheung's picture
Upload folder using huggingface_hub
5cec73c
raw
history blame
8.82 kB
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Tokenization classes for QWen."""
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import os
import unicodedata
from io import open
import base64
import tiktoken
from typing import List, Optional, Tuple, Union
from transformers import PreTrainedTokenizer, AddedToken
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
class QWenTokenizer(PreTrainedTokenizer):
"""QWen tokenizer."""
"""NOTE: This tokenizer will not handle special tokens to avoid injection attacks"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
errors="replace",
max_len=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_prefix_space=False,
add_bos_token=False,
add_more_sp_tokens=True,
**kwargs,
):
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False)
if isinstance(unk_token, str)
else unk_token
)
pad_token = (
AddedToken(pad_token, lstrip=False, rstrip=False)
if isinstance(pad_token, str)
else pad_token
)
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
)
self.add_bos_token = add_bos_token
self.max_len = max_len if max_len is not None else int(1e12)
self.errors = errors # how to handle errors in decoding
name = "Qwen"
ENDOFTEXT = "<|endoftext|>"
IMSTART = "<|im_start|>"
IMEND = "<|im_end|>"
if add_more_sp_tokens:
special_tokens = (
ENDOFTEXT,
IMSTART,
IMEND,
"<R>",
"<S>",
"<X>",
"<mask>",
"<sep>",
) + tuple([f"<extra_{i}>" for i in range(200)])
else:
special_tokens = (ENDOFTEXT, IMSTART, IMEND)
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
def load_tiktoken_bpe(tiktoken_bpe_file: str) -> "dict[bytes, int]":
contents = open(tiktoken_bpe_file, "rb").read()
return {
base64.b64decode(token): int(rank)
for token, rank in (
line.split() for line in contents.splitlines() if line
)
}
mergeable_ranks = load_tiktoken_bpe(vocab_file)
special_tokens = {
token: index
for index, token in enumerate(special_tokens, start=len(mergeable_ranks))
}
self.special_tokens = special_tokens
enc = tiktoken.Encoding(
name,
pat_str=PAT_STR,
mergeable_ranks=mergeable_ranks,
special_tokens=special_tokens,
)
assert (
len(mergeable_ranks) + len(special_tokens) == enc.n_vocab
), f"{len(mergeable_ranks) + len(special_tokens)} != {enc.n_vocab} in encoding"
self.mergeable_ranks = mergeable_ranks
self.encoder = self.mergeable_ranks
self.decoder = {v: k for k, v in self.encoder.items()}
self.tokenizer = enc # type: tiktoken.Encoding
self.eod_id = self.tokenizer.eot_token
self.im_start_id = special_tokens[IMSTART]
self.im_end_id = special_tokens[IMEND]
def __len__(self):
return self.tokenizer.n_vocab
def get_vocab(self):
return self.mergeable_ranks
def convert_tokens_to_ids(self, tokens):
ids = []
# Remove support for py2
if isinstance(tokens, str):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.encoder.get(tokens)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.encoder.get(token))
if len(ids) > self.max_len:
logger.warning(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(
len(ids), self.max_len
)
)
return ids
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
"""
Save only the vocabulary of the tokenizer (vocabulary + added tokens).
Returns:
`Tuple(str)`: Paths to the files saved.
"""
file_path = os.path.join(save_directory, "qwen.tiktoken")
with open(file_path, "w", encoding="utf8") as w:
for k, v in self.mergeable_ranks.items():
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
w.write(line)
return (file_path,)
def tokenize(self, text: str, **kwargs) -> List[str]:
"""
Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`.
Args:
text (`str`):
The sequence to be encoded.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific encode method. See details in
[`~PreTrainedTokenizerBase.__call__`]
Returns:
`List[str]`: The list of tokens.
"""
tokens = []
text = unicodedata.normalize("NFC", text)
for t in self.tokenizer.encode_ordinary(text):
tokens.append(self.decoder[t])
return tokens
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""
Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we
often want to remove sub-word tokenization artifacts at the same time.
"""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode(
"utf-8", errors=self.errors
)
return text
@property
def vocab_size(self):
return self.tokenizer.n_vocab
def _convert_id_to_token(self, index: int) -> str:
if index >= self.tokenizer.n_vocab:
return self.unk_token
return self.tokenizer.decode([index])
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token to an id using the vocab."""
return self.encoder.get(token.encode('UTF-8'), self.tokenizer.encode(self.unk_token, allowed_special='all')[0])
@property
def all_special_tokens(self) -> List[str]:
"""
`List[str]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
Convert tokens of `tokenizers.AddedToken` type to string.
"""
all_toks = [str(s) for s in self.special_tokens.keys()]
return all_toks
@property
def all_special_ids(self) -> List[int]:
"""
`List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
"""
all_ids = [v for v in self.special_tokens.values()]
return all_ids
def _tokenize(self, text, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i not in self.all_special_ids]
return self.tokenizer.decode(token_ids)