--- license: apache-2.0 base_model: Twitter/twhin-bert-base tags: - text-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: fine-tuned-bert-extractive-summarization results: [] --- # fine-tuned-bert-extractive-summarization This model is a fine-tuned version of [Twitter/twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5566 - Accuracy: 0.6995 - Precision: 0.6947 - Recall: 0.6995 - F1: 0.6961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5748 | 1.0 | 7107 | 0.5609 | 0.6916 | 0.6858 | 0.6916 | 0.6873 | | 0.5552 | 2.0 | 14215 | 0.5659 | 0.6839 | 0.6931 | 0.6839 | 0.6870 | | 0.5364 | 3.0 | 21321 | 0.5566 | 0.6995 | 0.6947 | 0.6995 | 0.6961 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2