Jean-Baptiste commited on
Commit
ef59015
1 Parent(s): d0002b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -21
README.md CHANGED
@@ -15,6 +15,17 @@ Model was trained on wikiner-fr dataset (~170 634 sentences).
15
  Model was validated on emails/chat data and overperformed other models on this type of data specifically.
16
  In particular the model seems to work better on entity that don't start with an upper case.
17
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ## How to use camembert-ner with HuggingFace
20
 
@@ -81,29 +92,23 @@ nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance d
81
 
82
  ## Model performances (metric: seqeval)
83
 
84
- Global
85
- ```
86
- 'precision': 0.8859
87
- 'recall': 0.8971
88
- 'f1': 0.8914
89
- ```
90
 
91
  By entity
92
- ```
93
- 'LOC': {'precision': 0.8905576596578294,
94
- 'recall': 0.900554675118859,
95
- 'f1': 0.8955282684352223},
96
- 'MISC': {'precision': 0.8175627240143369,
97
- 'recall': 0.8117437722419929,
98
- 'f1': 0.8146428571428571},
99
- 'ORG': {'precision': 0.8099480326651819,
100
- 'recall': 0.8265151515151515,
101
- 'f1': 0.8181477315335584},
102
- 'PER': {'precision': 0.9372509960159362,
103
- 'recall': 0.959812321501428,
104
- 'f1': 0.9483975005039308}
105
-
106
- ```
107
 
108
  A short article on how I used the result of this model to train a LSTM model for signature detection in emails:
109
  https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
 
15
  Model was validated on emails/chat data and overperformed other models on this type of data specifically.
16
  In particular the model seems to work better on entity that don't start with an upper case.
17
 
18
+ ## Training data
19
+ Training data was classified as follow:
20
+
21
+ Abbreviation|Description
22
+ -|-
23
+ O |Outside of a named entity
24
+ MISC |Miscellaneous entity
25
+ PER |Person’s name
26
+ ORG |Organization
27
+ LOC |Location
28
+
29
 
30
  ## How to use camembert-ner with HuggingFace
31
 
 
92
 
93
  ## Model performances (metric: seqeval)
94
 
95
+ Overall
96
+
97
+ precision|recall|f1
98
+ -|-|-
99
+ 0.8859|0.8971|0.8914
 
100
 
101
  By entity
102
+
103
+ entity|precision|recall|f1
104
+ -|-|-|-
105
+ PER|0.9372|0.9598|0.9483
106
+ ORG|0.8099|0.8265|0.8181
107
+ LOC|0.8905|0.9005|0.8955
108
+ MISC|0.8175|0.8117|0.8146
109
+
110
+
111
+
 
 
 
 
 
112
 
113
  A short article on how I used the result of this model to train a LSTM model for signature detection in emails:
114
  https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa