PEFT
Safetensors
English
jinjieyuan commited on
Commit
3861d7d
1 Parent(s): 2a64565

Remove base model

Browse files

Signed-off-by: jinjieyuan <[email protected]>

README.md CHANGED
@@ -5,7 +5,7 @@ license: apache-2.0
5
 
6
  # Shears Model Card: shears-mpt-7b-50-gsm8k-super
7
 
8
- The super-network fine-tuned on MPT-7B with GSM8K datasets using Shears.
9
 
10
  The release of the super-network is to facilitate users to apply their own search algorithms and evaluation indicators to extract subnetworks suitable for their specific needs.
11
 
@@ -14,10 +14,10 @@ The release of the super-network is to facilitate users to apply their own searc
14
  ### Information
15
 
16
  - **Model name:** shears-mpt-7b-50-gsm8k-super
17
- - **Base model:** [mpt-7b](https://huggingface.co/mosaicml/mpt-7b)
18
  - **Sparsity:** 50%
19
- - **Subnetwork version:** Super-network
20
- - **NNCF Configuration:** [nncf_shears_mpt_7b_sparsity50.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/gsm8k/nncf_shears_mpt_7b_sparsity50.json)
21
 
22
  ### Adapter Configuration
23
 
@@ -58,17 +58,14 @@ def generate_prompt(instruction):
58
  ### Response:
59
  """
60
 
61
- base_model_path = "shears-mpt-7b-50-gsm8k-super/base_model"
62
- adapter_model_path = "shears-mpt-7b-50-gsm8k-super/adapter_model"
63
- base_model = AutoModelForCausalLM.from_pretrained(base_model_path, trust_remote_code=True)
64
- model = PeftModel.from_pretrained(base_model, adapter_model_path)
65
  model.eval()
66
 
67
  non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])
68
  print(f"Number of all non-zero parameters: {non_zero_params}")
69
 
70
- tokenizer = AutoTokenizer.from_pretrained(model_path)
71
- tokenizer.pad_token_id = 0
72
 
73
  instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?"
74
  prompt = generate_prompt(instruction)
@@ -83,8 +80,8 @@ with torch.no_grad():
83
  use_cache=True,
84
  num_beams=4,
85
  )
86
- s = generation_output.sequences[0]
87
- output = tokenizer.decode(s)
88
  print(output)
89
 
90
  ```
@@ -100,7 +97,7 @@ Results of the heuristic sub-network discoverd from the super-network:
100
  ## Model Sources
101
 
102
  - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears)
103
- - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search]()
104
 
105
  ## Citation
106
 
@@ -108,7 +105,7 @@ Results of the heuristic sub-network discoverd from the super-network:
108
  @article{munoz2024shears,
109
  title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},
110
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
111
- journal={},
112
  year={2024}
113
  }
114
  ```
 
5
 
6
  # Shears Model Card: shears-mpt-7b-50-gsm8k-super
7
 
8
+ The super-adapter fine-tuned on sparsified MPT-7B with GSM8K datasets using Shears.
9
 
10
  The release of the super-network is to facilitate users to apply their own search algorithms and evaluation indicators to extract subnetworks suitable for their specific needs.
11
 
 
14
  ### Information
15
 
16
  - **Model name:** shears-mpt-7b-50-gsm8k-super
17
+ - **Base model:** [IntelLabs/MPT-7B-sparsity50](https://huggingface.co/IntelLabs/MPT-7B-sparsity50)
18
  - **Sparsity:** 50%
19
+ - **Subnetwork version:** Super
20
+ - **NNCF Configuration:** [nncf_shears_mpt.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/gsm8k/nncf_shears_mpt.json)
21
 
22
  ### Adapter Configuration
23
 
 
58
  ### Response:
59
  """
60
 
61
+ base_model = AutoModelForCausalLM.from_pretrained("IntelLabs/MPT-7B-sparsity50", trust_remote_code=True)
62
+ model = PeftModel.from_pretrained(base_model, "IntelLabs/shears-mpt-7b-50-gsm8k-super")
 
 
63
  model.eval()
64
 
65
  non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])
66
  print(f"Number of all non-zero parameters: {non_zero_params}")
67
 
68
+ tokenizer = AutoTokenizer.from_pretrained("IntelLabs/MPT-7B-sparsity50", trust_remote_code=True)
 
69
 
70
  instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?"
71
  prompt = generate_prompt(instruction)
 
80
  use_cache=True,
81
  num_beams=4,
82
  )
83
+ s = generation_output.sequences[0]
84
+ output = tokenizer.decode(s)
85
  print(output)
86
 
87
  ```
 
97
  ## Model Sources
98
 
99
  - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears)
100
+ - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search](https://arxiv.org/abs/2404.10934)
101
 
102
  ## Citation
103
 
 
105
  @article{munoz2024shears,
106
  title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},
107
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
108
+ journal={The 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-2024)},
109
  year={2024}
110
  }
111
  ```
adapter_model/adapter_config.json → adapter_config.json RENAMED
@@ -1,6 +1,6 @@
1
  {
2
  "auto_mapping": null,
3
- "base_model_name_or_path": "shears-mpt-7b-50-gsm8k-super/base_model",
4
  "bias": "none",
5
  "fan_in_fan_out": false,
6
  "inference_mode": true,
 
1
  {
2
  "auto_mapping": null,
3
+ "base_model_name_or_path": "IntelLabs/MPT-7B-sparsity50",
4
  "bias": "none",
5
  "fan_in_fan_out": false,
6
  "inference_mode": true,
adapter_model/adapter_model.safetensors → adapter_model.safetensors RENAMED
File without changes
base_model/adapt_tokenizer.py DELETED
@@ -1,40 +0,0 @@
1
- from typing import Any
2
- from transformers import AutoTokenizer, PreTrainedTokenizerBase
3
- NUM_SENTINEL_TOKENS: int = 100
4
-
5
- def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
6
- """Adds sentinel tokens and padding token (if missing).
7
-
8
- Expands the tokenizer vocabulary to include sentinel tokens
9
- used in mixture-of-denoiser tasks as well as a padding token.
10
-
11
- All added tokens are added as special tokens. No tokens are
12
- added if sentinel tokens and padding token already exist.
13
- """
14
- sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
15
- tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
16
- if tokenizer.pad_token is None:
17
- tokenizer.add_tokens('<pad>', special_tokens=True)
18
- tokenizer.pad_token = '<pad>'
19
- assert tokenizer.pad_token_id is not None
20
- sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
21
- _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
22
- tokenizer.sentinel_token_ids = _sentinel_token_ids
23
-
24
- class AutoTokenizerForMOD(AutoTokenizer):
25
- """AutoTokenizer + Adaptation for MOD.
26
-
27
- A simple wrapper around AutoTokenizer to make instantiating
28
- an MOD-adapted tokenizer a bit easier.
29
-
30
- MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
31
- a padding token, and a property to get the token ids of the
32
- sentinel tokens.
33
- """
34
-
35
- @classmethod
36
- def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
37
- """See `AutoTokenizer.from_pretrained` docstring."""
38
- tokenizer = super().from_pretrained(*args, **kwargs)
39
- adapt_tokenizer_for_denoising(tokenizer)
40
- return tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/attention.py DELETED
@@ -1,350 +0,0 @@
1
- """Attention layers."""
2
- import math
3
- import warnings
4
- from typing import Any, List, Optional, Tuple
5
- import torch
6
- import torch.nn as nn
7
- from einops import rearrange
8
- from packaging import version
9
- from torch import nn
10
- from .fc import FC_CLASS_REGISTRY
11
- from .norm import NORM_CLASS_REGISTRY
12
-
13
- def is_flash_v2_installed():
14
- try:
15
- import flash_attn as flash_attn
16
- except:
17
- return False
18
- return version.parse(flash_attn.__version__) >= version.parse('2.0.0')
19
-
20
- def is_flash_v1_installed():
21
- try:
22
- import flash_attn as flash_attn
23
- except:
24
- return False
25
- return version.parse(flash_attn.__version__) < version.parse('2.0.0')
26
-
27
- def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
28
- if original_is_causal and num_query_tokens != num_key_tokens:
29
- if num_query_tokens != 1:
30
- raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
31
- else:
32
- return False
33
- return original_is_causal
34
-
35
- def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
36
- """Perform repeat of kv heads along a particular dimension.
37
-
38
- hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
39
- n_rep: amount of repetitions of kv_n_heads
40
- Unlike torch.repeat_interleave, this function avoids allocating new memory.
41
- """
42
- if n_rep == 1:
43
- return hidden
44
- (b, s, kv_n_heads, d) = hidden.shape
45
- hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
46
- return hidden.reshape(b, s, kv_n_heads * n_rep, d)
47
-
48
- def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
49
- if multiquery:
50
- warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
51
- kv_n_heads = 1
52
- elif kv_n_heads is None:
53
- warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
54
- kv_n_heads = n_heads
55
- q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
56
- k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
57
- v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
58
- if past_key_value is not None:
59
- if len(past_key_value) != 0:
60
- k = torch.cat([past_key_value[0], k], dim=3)
61
- v = torch.cat([past_key_value[1], v], dim=2)
62
- past_key_value = (k, v)
63
- (b, _, s_q, d) = q.shape
64
- s_k = k.size(-1)
65
- if kv_n_heads > 1 and kv_n_heads < n_heads:
66
- k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
67
- v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
68
- if softmax_scale is None:
69
- softmax_scale = 1 / math.sqrt(d)
70
- attn_weight = q.matmul(k) * softmax_scale
71
- if attn_bias is not None:
72
- _s_q = max(0, attn_bias.size(2) - s_q)
73
- _s_k = max(0, attn_bias.size(3) - s_k)
74
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
75
- if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
76
- raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
77
- attn_weight = attn_weight + attn_bias
78
- min_val = torch.finfo(q.dtype).min
79
- if key_padding_mask is not None:
80
- if attn_bias is not None:
81
- warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
82
- attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
83
- if is_causal and (not q.size(2) == 1):
84
- s = max(s_q, s_k)
85
- causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
86
- causal_mask = causal_mask.tril()
87
- causal_mask = causal_mask.to(torch.bool)
88
- causal_mask = ~causal_mask
89
- causal_mask = causal_mask[-s_q:, -s_k:]
90
- attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
91
- attn_weight = torch.softmax(attn_weight, dim=-1)
92
- if dropout_p:
93
- attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
94
- out = attn_weight.to(v.dtype).matmul(v)
95
- out = rearrange(out, 'b h s d -> b s (h d)')
96
- if needs_weights:
97
- return (out, attn_weight, past_key_value)
98
- return (out, None, past_key_value)
99
-
100
- def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch.dtype]]=None):
101
- if valid_dtypes is None:
102
- valid_dtypes = [torch.float16, torch.bfloat16]
103
- for tensor in tensors:
104
- if tensor.dtype not in valid_dtypes:
105
- raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
106
- if not tensor.is_cuda:
107
- raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
108
-
109
- def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
110
- try:
111
- from flash_attn import bert_padding, flash_attn_interface
112
- except:
113
- raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.2')
114
- check_valid_inputs(query, key, value)
115
- if multiquery:
116
- warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
117
- kv_n_heads = 1
118
- elif kv_n_heads is None:
119
- warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
120
- kv_n_heads = n_heads
121
- if past_key_value is not None:
122
- if len(past_key_value) != 0:
123
- key = torch.cat([past_key_value[0], key], dim=1)
124
- value = torch.cat([past_key_value[1], value], dim=1)
125
- past_key_value = (key, value)
126
- if attn_bias is not None:
127
- _s_q = max(0, attn_bias.size(2) - query.size(1))
128
- _s_k = max(0, attn_bias.size(3) - key.size(1))
129
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
130
- if attn_bias is not None:
131
- raise NotImplementedError(f'attn_bias not implemented for flash attn.')
132
- (batch_size, seqlen) = query.shape[:2]
133
- if key_padding_mask is None:
134
- key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
135
- query_padding_mask = key_padding_mask[:, -query.size(1):]
136
- (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
137
- query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
138
- (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
139
- key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
140
- (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
141
- value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
142
- if kv_n_heads == 1:
143
- key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
144
- value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
145
- elif kv_n_heads < n_heads:
146
- key_unpad = repeat_kv_for_gqa(key_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
147
- value_unpad = repeat_kv_for_gqa(value_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
148
- dropout_p = dropout_p if training else 0.0
149
- reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
150
- if is_flash_v1_installed():
151
- output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
152
- elif is_flash_v2_installed():
153
- output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
154
- else:
155
- raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.3.2 is required.')
156
- output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
157
- return (output, None, past_key_value)
158
-
159
- def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
160
- try:
161
- from .flash_attn_triton import flash_attn_func
162
- except:
163
- _installed = False
164
- if version.parse(torch.__version__) < version.parse('2.0.0'):
165
- _installed = True
166
- try:
167
- from flash_attn.flash_attn_triton import flash_attn_func
168
- except:
169
- _installed = False
170
- if not _installed:
171
- raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
172
- check_valid_inputs(query, key, value)
173
- if multiquery:
174
- warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
175
- kv_n_heads = 1
176
- elif kv_n_heads is None:
177
- warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
178
- kv_n_heads = n_heads
179
- if past_key_value is not None:
180
- if len(past_key_value) != 0:
181
- key = torch.cat([past_key_value[0], key], dim=1)
182
- value = torch.cat([past_key_value[1], value], dim=1)
183
- past_key_value = (key, value)
184
- if attn_bias is not None:
185
- _s_q = max(0, attn_bias.size(2) - query.size(1))
186
- _s_k = max(0, attn_bias.size(3) - key.size(1))
187
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
188
- if dropout_p:
189
- raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
190
- dropout_p = dropout_p if training else 0.0
191
- if needs_weights:
192
- raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
193
- if key_padding_mask is not None:
194
- warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
195
- (b_size, s_k) = key_padding_mask.shape[:2]
196
- if attn_bias is None:
197
- attn_bias = query.new_zeros(b_size, 1, 1, s_k)
198
- attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
199
- query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
200
- key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
201
- value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
202
- if kv_n_heads == 1:
203
- key = key.repeat(1, 1, n_heads, 1)
204
- value = value.repeat(1, 1, n_heads, 1)
205
- elif kv_n_heads < n_heads:
206
- key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
207
- value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
208
- reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
209
- attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
210
- output = attn_output.view(*attn_output.shape[:2], -1)
211
- return (output, None, past_key_value)
212
-
213
- class GroupedQueryAttention(nn.Module):
214
- """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
215
-
216
- and Multi-query attention (MQA).
217
-
218
- This allows the user to set a variable of number of kv_n_heads, rather than
219
- just n_heads or 1, as in MHA and MQA. Using torch or triton attention
220
- implementation enables user to also use additive bias.
221
- """
222
-
223
- def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
224
- super().__init__()
225
- self.attn_impl = attn_impl
226
- self.clip_qkv = clip_qkv
227
- self.qk_ln = qk_ln
228
- self.d_model = d_model
229
- self.n_heads = n_heads
230
- self.kv_n_heads = kv_n_heads
231
- self.head_dim = d_model // n_heads
232
- if self.kv_n_heads <= 0:
233
- raise ValueError('kv_n_heads should be greater than zero.')
234
- if self.kv_n_heads > self.n_heads:
235
- raise ValueError('The number of KV heads should be less than or equal to Q heads.')
236
- if self.n_heads % self.kv_n_heads != 0:
237
- raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
238
- self.softmax_scale = softmax_scale
239
- if self.softmax_scale is None:
240
- self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
241
- self.attn_dropout_p = attn_pdrop
242
- fc_kwargs: dict[str, Any] = {'bias': bias}
243
- if fc_type != 'te':
244
- fc_kwargs['device'] = device
245
-
246
- # Separating QKV brings more flexibility for pruning.
247
- # self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
248
- # fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
249
- # self.Wqkv._fused = (0, fuse_splits)
250
- self.q_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
251
- self.k_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.kv_n_heads * self.head_dim, **fc_kwargs)
252
- self.v_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.kv_n_heads * self.head_dim, **fc_kwargs)
253
-
254
- if self.qk_ln:
255
- norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
256
- self.q_ln = norm_class(self.d_model, device=device)
257
- self.k_ln = norm_class(self.kv_n_heads * self.head_dim, device=device)
258
- if self.attn_impl == 'flash':
259
- self.attn_fn = flash_attn_fn
260
- elif self.attn_impl == 'triton':
261
- self.attn_fn = triton_flash_attn_fn
262
- elif self.attn_impl == 'torch':
263
- self.attn_fn = scaled_multihead_dot_product_attention
264
- else:
265
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
266
- self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
267
- self.out_proj._is_residual = True
268
-
269
- def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, is_causal: bool=True, needs_weights: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
270
- # qkv = self.Wqkv(x)
271
- # if self.clip_qkv:
272
- # qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
273
- # (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
274
- query, key, value = self.q_proj(x), self.k_proj(x), self.v_proj(x)
275
- if self.clip_qkv:
276
- query = query.clamp(min=-self.clip_qkv, max=self.clip_qkv)
277
- key = key.clamp(min=-self.clip_qkv, max=self.clip_qkv)
278
- value = value.clamp(min=-self.clip_qkv, max=self.clip_qkv)
279
-
280
- key_padding_mask = attention_mask
281
- if self.qk_ln:
282
- dtype = query.dtype
283
- query = self.q_ln(query).to(dtype)
284
- key = self.k_ln(key).to(dtype)
285
- (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
286
- return (self.out_proj(context), attn_weights, past_key_value)
287
-
288
- class MultiheadAttention(GroupedQueryAttention):
289
- """Multi-head self attention.
290
-
291
- Using torch or triton attention implementation enables user to also use
292
- additive bias.
293
- """
294
-
295
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
296
- super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
297
-
298
- class MultiQueryAttention(GroupedQueryAttention):
299
- """Multi-Query self attention.
300
-
301
- Using torch or triton attention implementation enables user to also use
302
- additive bias.
303
- """
304
-
305
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
306
- super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
307
-
308
- def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[Tuple[int, int, int, int]]:
309
- if attn_impl == 'flash':
310
- return None
311
- elif attn_impl in ['torch', 'triton']:
312
- if alibi:
313
- if (prefix_lm or not causal) or use_sequence_id:
314
- return (1, n_heads, seq_len, seq_len)
315
- return (1, n_heads, 1, seq_len)
316
- elif prefix_lm or use_sequence_id:
317
- return (1, 1, seq_len, seq_len)
318
- return None
319
- else:
320
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
321
-
322
- def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
323
- if attn_impl == 'flash':
324
- return None
325
- elif attn_impl in ['torch', 'triton']:
326
- if alibi:
327
- (device, dtype) = (attn_bias.device, attn_bias.dtype)
328
- attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
329
- return attn_bias
330
- else:
331
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
332
-
333
- def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor:
334
- _n_heads = 2 ** math.ceil(math.log2(n_heads))
335
- m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
336
- m = m.mul(alibi_bias_max / _n_heads)
337
- slopes = 1.0 / torch.pow(2, m)
338
- if _n_heads != n_heads:
339
- slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
340
- return slopes.view(1, n_heads, 1, 1)
341
-
342
- def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
343
- alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
344
- if full:
345
- alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
346
- alibi_bias = alibi_bias.abs().mul(-1)
347
- slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
348
- alibi_bias = alibi_bias * slopes
349
- return alibi_bias.to(dtype=dtype)
350
- ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/blocks.py DELETED
@@ -1,41 +0,0 @@
1
- """GPT Blocks used for the GPT Model."""
2
- from typing import Any, Dict, Optional, Tuple
3
- import torch
4
- import torch.nn as nn
5
- from .attention import ATTN_CLASS_REGISTRY
6
- from .ffn import FFN_CLASS_REGISTRY, build_ffn
7
- from .norm import NORM_CLASS_REGISTRY
8
-
9
- class MPTBlock(nn.Module):
10
-
11
- def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, **kwargs: Any):
12
- if attn_config is None:
13
- attn_config = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
14
- if ffn_config is None:
15
- ffn_config = {'ffn_type': 'mptmlp'}
16
- del kwargs
17
- super().__init__()
18
- norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
19
- assert isinstance(attn_config['attn_type'], str)
20
- attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
21
- args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max'}
22
- attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
23
- self.norm_1 = norm_class(d_model, device=device)
24
- self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
25
- self.norm_2 = None
26
- if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
27
- self.norm_2 = norm_class(d_model, device=device)
28
- self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
29
- self.resid_attn_dropout = nn.Dropout(resid_pdrop)
30
- self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
31
-
32
- def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
33
- a = self.norm_1(x)
34
- (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions)
35
- x = x + self.resid_attn_dropout(b)
36
- m = x
37
- if self.norm_2 is not None:
38
- m = self.norm_2(x)
39
- n = self.ffn(m)
40
- x = x + self.resid_ffn_dropout(n)
41
- return (x, attn_weights, past_key_value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/config.json DELETED
@@ -1,56 +0,0 @@
1
- {
2
- "architectures": [
3
- "MPTForCausalLM"
4
- ],
5
- "attn_config": {
6
- "alibi": true,
7
- "alibi_bias_max": 8,
8
- "attn_impl": "torch",
9
- "attn_pdrop": 0,
10
- "attn_type": "multihead_attention",
11
- "attn_uses_sequence_id": false,
12
- "clip_qkv": null,
13
- "prefix_lm": false,
14
- "qk_ln": false,
15
- "softmax_scale": null
16
- },
17
- "auto_map": {
18
- "AutoConfig": "configuration_mpt.MPTConfig",
19
- "AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
20
- },
21
- "d_model": 4096,
22
- "emb_pdrop": 0,
23
- "embedding_fraction": 1.0,
24
- "expansion_ratio": 4,
25
- "fc_type": "torch",
26
- "ffn_config": {
27
- "fc_type": "torch",
28
- "ffn_type": "mptmlp"
29
- },
30
- "init_config": {
31
- "emb_init_std": null,
32
- "emb_init_uniform_lim": null,
33
- "fan_mode": "fan_in",
34
- "init_div_is_residual": true,
35
- "init_gain": 0,
36
- "init_nonlinearity": "relu",
37
- "init_std": 0.02,
38
- "name": "kaiming_normal_",
39
- "verbose": 0
40
- },
41
- "init_device": "cpu",
42
- "learned_pos_emb": false,
43
- "logit_scale": null,
44
- "max_seq_len": 2048,
45
- "model_type": "mpt",
46
- "n_heads": 32,
47
- "n_layers": 32,
48
- "no_bias": true,
49
- "norm_type": "low_precision_layernorm",
50
- "resid_pdrop": 0,
51
- "tokenizer_name": "EleutherAI/gpt-neox-20b",
52
- "torch_dtype": "float16",
53
- "transformers_version": "4.31.0",
54
- "use_cache": false,
55
- "vocab_size": 50432
56
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/configuration_mpt.py DELETED
@@ -1,140 +0,0 @@
1
- """A HuggingFace-style model configuration."""
2
- import warnings
3
- from typing import Any, Dict, Optional, Union
4
- from transformers import PretrainedConfig
5
- attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
6
- ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
7
- init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
8
-
9
- class MPTConfig(PretrainedConfig):
10
- model_type = 'mpt'
11
-
12
- def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', verbose: Optional[int]=None, **kwargs: Any):
13
- """The MPT configuration class.
14
-
15
- Args:
16
- d_model (int): The size of the embedding dimension of the model.
17
- n_heads (int): The number of attention heads.
18
- n_layers (int): The number of layers in the model.
19
- expansion_ratio (int): The ratio of the up/down scale in the ffn.
20
- max_seq_len (int): The maximum sequence length of the model.
21
- vocab_size (int): The size of the vocabulary.
22
- resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
23
- emb_pdrop (float): The dropout probability for the embedding layer.
24
- learned_pos_emb (bool): Whether to use learned positional embeddings
25
- attn_config (Dict): A dictionary used to configure the model's attention module:
26
- attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
27
- attn_pdrop (float): The dropout probability for the attention layers.
28
- attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
29
- qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
30
- clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
31
- this value.
32
- softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
33
- use the default scale of ``1/sqrt(d_keys)``.
34
- prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
35
- extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
36
- can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
37
- attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
38
- When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
39
- which sub-sequence each token belongs to.
40
- Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
41
- alibi (bool): Whether to use the alibi bias instead of position embeddings.
42
- alibi_bias_max (int): The maximum value of the alibi bias.
43
- kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
44
- ffn_config (Dict): A dictionary used to configure the model's ffn module:
45
- ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
46
- init_device (str): The device to use for parameter initialization.
47
- logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
48
- no_bias (bool): Whether to use bias in all layers.
49
- verbose (int): The verbosity level. 0 is silent.
50
- embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
51
- norm_type (str): choose type of norm to use
52
- use_cache (bool): Whether or not the model should return the last key/values attentions
53
- init_config (Dict): A dictionary used to configure the model initialization:
54
- init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
55
- 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
56
- 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
57
- init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
58
- emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
59
- emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
60
- used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
61
- init_std (float): The standard deviation of the normal distribution used to initialize the model,
62
- if using the baseline_ parameter initialization scheme.
63
- init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
64
- fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
65
- init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
66
- ---
67
- See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
68
- fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
69
- """
70
- self.d_model = d_model
71
- self.n_heads = n_heads
72
- self.n_layers = n_layers
73
- self.expansion_ratio = expansion_ratio
74
- self.max_seq_len = max_seq_len
75
- self.vocab_size = vocab_size
76
- self.resid_pdrop = resid_pdrop
77
- self.emb_pdrop = emb_pdrop
78
- self.learned_pos_emb = learned_pos_emb
79
- self.attn_config = attn_config
80
- self.ffn_config = ffn_config
81
- self.init_device = init_device
82
- self.logit_scale = logit_scale
83
- self.no_bias = no_bias
84
- self.embedding_fraction = embedding_fraction
85
- self.norm_type = norm_type
86
- self.use_cache = use_cache
87
- self.init_config = init_config
88
- self.fc_type = fc_type
89
- if verbose is not None:
90
- warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
91
- if 'name' in kwargs:
92
- del kwargs['name']
93
- if 'loss_fn' in kwargs:
94
- del kwargs['loss_fn']
95
- if self.attn_config.get('alibi', False):
96
- self.learned_pos_emb = False
97
- warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
98
- super().__init__(**kwargs)
99
- self._validate_config()
100
-
101
- def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
102
- for (k, v) in config_defaults.items():
103
- if k not in config:
104
- config[k] = v
105
- return config
106
-
107
- def _validate_config(self) -> None:
108
- self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
109
- self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
110
- self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
111
- if self.d_model % self.n_heads != 0:
112
- raise ValueError('d_model must be divisible by n_heads')
113
- if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
114
- raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
115
- if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
116
- raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
117
- if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
118
- raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
119
- if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
120
- raise NotImplementedError('alibi only implemented with torch and triton attention.')
121
- if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
122
- raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
123
- if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
124
- raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
125
- if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
126
- raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
127
- if self.init_config.get('name', None) is None:
128
- raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
129
- if not self.learned_pos_emb and (not self.attn_config['alibi']):
130
- warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
131
- if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
132
- try:
133
- import transformer_engine.pytorch as te
134
- del te
135
- except:
136
- raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
137
- if self.ffn_config['ffn_type'] == 'mptmlp':
138
- self.ffn_config['fc_type'] = self.fc_type
139
- elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
140
- self.ffn_config['bias'] = not self.no_bias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/custom_embedding.py DELETED
@@ -1,10 +0,0 @@
1
- import torch.nn as nn
2
- import torch.nn.functional as F
3
- from torch import Tensor
4
-
5
- class SharedEmbedding(nn.Embedding):
6
-
7
- def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
8
- if unembed:
9
- return F.linear(input, self.weight)
10
- return super().forward(input)
 
 
 
 
 
 
 
 
 
 
 
base_model/fc.py DELETED
@@ -1,7 +0,0 @@
1
- from torch import nn
2
- FC_CLASS_REGISTRY = {'torch': nn.Linear}
3
- try:
4
- import transformer_engine.pytorch as te
5
- FC_CLASS_REGISTRY['te'] = te.Linear
6
- except:
7
- pass
 
 
 
 
 
 
 
 
base_model/ffn.py DELETED
@@ -1,39 +0,0 @@
1
- """GPT Blocks used for the GPT Model."""
2
- from typing import Any, Optional
3
- import torch
4
- import torch.nn as nn
5
- from .fc import FC_CLASS_REGISTRY
6
- try:
7
- import transformer_engine.pytorch as te
8
- except:
9
- te = None
10
-
11
- class MPTMLP(nn.Module):
12
-
13
- def __init__(self, d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
14
- super().__init__()
15
- fc_kwargs: dict[str, Any] = {'bias': bias}
16
- if fc_type != 'te':
17
- fc_kwargs['device'] = device
18
- self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, expansion_ratio * d_model, **fc_kwargs)
19
- self.act = nn.GELU(approximate='none')
20
- self.down_proj = FC_CLASS_REGISTRY[fc_type](expansion_ratio * d_model, d_model, **fc_kwargs)
21
- self.down_proj._is_residual = True
22
-
23
- def forward(self, x: torch.Tensor) -> torch.Tensor:
24
- return self.down_proj(self.act(self.up_proj(x)))
25
- FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP}
26
- if te is not None:
27
- te.LayerNormMLP._has_norm = True
28
- FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
29
-
30
- def build_ffn(d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
31
- ffn_type = kwargs.pop('ffn_type')
32
- if ffn_type == 'mptmlp':
33
- if len(kwargs) > 0:
34
- raise ValueError(f'MPTMLP got an unexpected keyword argument: {kwargs}')
35
- return MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, device=device, bias=bias)
36
- elif ffn_type == 'te_ln_mlp':
37
- assert te is not None
38
- return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=d_model * expansion_ratio, bias=bias, **kwargs)
39
- raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/flash_attn_triton.py DELETED
@@ -1,484 +0,0 @@
1
- """
2
- Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
- update imports to use 'triton_pre_mlir'
4
-
5
- *Experimental* implementation of FlashAttention in Triton.
6
- Tested with triton==2.0.0.dev20221202.
7
- Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
8
- other than 64:
9
- https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
10
- We'll update this implementation with the new Triton backend once this is fixed.
11
-
12
- We use the FlashAttention implementation from Phil Tillet a starting point.
13
- https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
14
-
15
- Changes:
16
- - Implement both causal and non-causal attention.
17
- - Implement both self-attention and cross-attention.
18
- - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
19
- - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
20
- - Support attention bias.
21
- - Speed up the forward pass a bit, and only store the LSE instead of m and l.
22
- - Make the backward for d=128 much faster by reducing register spilling.
23
- - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
24
- small batch size * nheads.
25
-
26
- Caution:
27
- - This is an *experimental* implementation. The forward pass should be quite robust but
28
- I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
29
- - This implementation has only been tested on A100.
30
- - If you plan to use headdim other than 64 and 128, you should test for race conditions
31
- (due to the Triton compiler), as done in tests/test_flash_attn.py
32
- "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
33
- for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
34
- that there are none left for other head dimensions.
35
-
36
- Differences between this Triton version and the CUDA version:
37
- - Triton version doesn't support dropout.
38
- - Triton forward is generally faster than CUDA forward, while Triton backward is
39
- generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
40
- than CUDA forward + backward.
41
- - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
42
- - Triton version supports attention bias, while CUDA version doesn't.
43
- """
44
- import math
45
- import torch
46
- import triton_pre_mlir as triton
47
- import triton_pre_mlir.language as tl
48
-
49
- @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
50
- @triton.jit
51
- def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
52
- start_m = tl.program_id(0)
53
- off_hb = tl.program_id(1)
54
- off_b = off_hb // nheads
55
- off_h = off_hb % nheads
56
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
57
- offs_n = tl.arange(0, BLOCK_N)
58
- offs_d = tl.arange(0, BLOCK_HEADDIM)
59
- q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
60
- k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
61
- v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
62
- if BIAS_TYPE == 'vector':
63
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
64
- elif BIAS_TYPE == 'matrix':
65
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
66
- t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
67
- lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
68
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
69
- acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
70
- if EVEN_M & EVEN_N:
71
- if EVEN_HEADDIM:
72
- q = tl.load(q_ptrs)
73
- else:
74
- q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
75
- elif EVEN_HEADDIM:
76
- q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
77
- else:
78
- q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
79
- end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
80
- for start_n in range(0, end_n, BLOCK_N):
81
- start_n = tl.multiple_of(start_n, BLOCK_N)
82
- if EVEN_N & EVEN_M:
83
- if EVEN_HEADDIM:
84
- k = tl.load(k_ptrs + start_n * stride_kn)
85
- else:
86
- k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
87
- elif EVEN_HEADDIM:
88
- k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
89
- else:
90
- k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
91
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
92
- qk += tl.dot(q, k, trans_b=True)
93
- if not EVEN_N:
94
- qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
95
- if IS_CAUSAL:
96
- qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
97
- if BIAS_TYPE != 'none':
98
- if BIAS_TYPE == 'vector':
99
- if EVEN_N:
100
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
101
- else:
102
- bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
103
- bias = bias[None, :]
104
- elif BIAS_TYPE == 'matrix':
105
- if EVEN_M & EVEN_N:
106
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
107
- else:
108
- bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
109
- qk = qk * softmax_scale + bias
110
- m_ij = tl.maximum(tl.max(qk, 1), lse_i)
111
- p = tl.exp(qk - m_ij[:, None])
112
- else:
113
- m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
114
- p = tl.exp(qk * softmax_scale - m_ij[:, None])
115
- l_ij = tl.sum(p, 1)
116
- acc_o_scale = tl.exp(m_i - m_ij)
117
- tl.store(t_ptrs, acc_o_scale)
118
- acc_o_scale = tl.load(t_ptrs)
119
- acc_o = acc_o * acc_o_scale[:, None]
120
- if EVEN_N & EVEN_M:
121
- if EVEN_HEADDIM:
122
- v = tl.load(v_ptrs + start_n * stride_vn)
123
- else:
124
- v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
125
- elif EVEN_HEADDIM:
126
- v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
127
- else:
128
- v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
129
- p = p.to(v.dtype)
130
- acc_o += tl.dot(p, v)
131
- m_i = m_ij
132
- l_i_new = tl.exp(lse_i - m_ij) + l_ij
133
- lse_i = m_ij + tl.log(l_i_new)
134
- o_scale = tl.exp(m_i - lse_i)
135
- tl.store(t_ptrs, o_scale)
136
- o_scale = tl.load(t_ptrs)
137
- acc_o = acc_o * o_scale[:, None]
138
- start_m = tl.program_id(0)
139
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
140
- lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
141
- tl.store(lse_ptrs, lse_i)
142
- offs_d = tl.arange(0, BLOCK_HEADDIM)
143
- out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
144
- if EVEN_M:
145
- if EVEN_HEADDIM:
146
- tl.store(out_ptrs, acc_o)
147
- else:
148
- tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
149
- elif EVEN_HEADDIM:
150
- tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
151
- else:
152
- tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
153
-
154
- @triton.jit
155
- def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
156
- start_m = tl.program_id(0)
157
- off_hb = tl.program_id(1)
158
- off_b = off_hb // nheads
159
- off_h = off_hb % nheads
160
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
161
- offs_d = tl.arange(0, BLOCK_HEADDIM)
162
- o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
163
- do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
164
- delta = tl.sum(o * do, axis=1)
165
- tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
166
-
167
- @triton.jit
168
- def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
169
- if EVEN_N & EVEN_M:
170
- if EVEN_HEADDIM:
171
- tl.store(dv_ptrs, dv)
172
- tl.store(dk_ptrs, dk)
173
- else:
174
- tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
175
- tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
176
- elif EVEN_HEADDIM:
177
- tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
178
- tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
179
- else:
180
- tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
181
- tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
182
-
183
- @triton.jit
184
- def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
185
- begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
186
- offs_qm = begin_m + tl.arange(0, BLOCK_M)
187
- offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
188
- offs_m = tl.arange(0, BLOCK_M)
189
- offs_d = tl.arange(0, BLOCK_HEADDIM)
190
- q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
191
- k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
192
- v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
193
- do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
194
- dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
195
- if BIAS_TYPE == 'vector':
196
- b_ptrs = Bias + offs_n
197
- elif BIAS_TYPE == 'matrix':
198
- b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
199
- dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
200
- dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
201
- if begin_m >= seqlen_q:
202
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
203
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
204
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
205
- return
206
- if EVEN_N & EVEN_M:
207
- if EVEN_HEADDIM:
208
- k = tl.load(k_ptrs)
209
- v = tl.load(v_ptrs)
210
- else:
211
- k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
212
- v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
213
- elif EVEN_HEADDIM:
214
- k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
215
- v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
216
- else:
217
- k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
218
- v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
219
- num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
220
- for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
221
- start_m = tl.multiple_of(start_m, BLOCK_M)
222
- offs_m_curr = start_m + offs_m
223
- if EVEN_M & EVEN_HEADDIM:
224
- q = tl.load(q_ptrs)
225
- elif EVEN_HEADDIM:
226
- q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
227
- else:
228
- q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
229
- qk = tl.dot(q, k, trans_b=True)
230
- if not EVEN_N:
231
- qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
232
- if IS_CAUSAL:
233
- qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
234
- if BIAS_TYPE != 'none':
235
- tl.debug_barrier()
236
- if BIAS_TYPE == 'vector':
237
- if EVEN_N:
238
- bias = tl.load(b_ptrs).to(tl.float32)
239
- else:
240
- bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
241
- bias = bias[None, :]
242
- elif BIAS_TYPE == 'matrix':
243
- if EVEN_M & EVEN_N:
244
- bias = tl.load(b_ptrs).to(tl.float32)
245
- else:
246
- bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
247
- qk = qk * softmax_scale + bias
248
- if not EVEN_M & EVEN_HEADDIM:
249
- tl.debug_barrier()
250
- lse_i = tl.load(LSE + offs_m_curr)
251
- if BIAS_TYPE == 'none':
252
- p = tl.exp(qk * softmax_scale - lse_i[:, None])
253
- else:
254
- p = tl.exp(qk - lse_i[:, None])
255
- if EVEN_M & EVEN_HEADDIM:
256
- do = tl.load(do_ptrs)
257
- else:
258
- do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
259
- dv += tl.dot(p.to(do.dtype), do, trans_a=True)
260
- if not EVEN_M & EVEN_HEADDIM:
261
- tl.debug_barrier()
262
- dp = tl.dot(do, v, trans_b=True)
263
- if not EVEN_HEADDIM:
264
- tl.debug_barrier()
265
- Di = tl.load(D + offs_m_curr)
266
- ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
267
- dk += tl.dot(ds, q, trans_a=True)
268
- if not EVEN_M & EVEN_HEADDIM:
269
- tl.debug_barrier()
270
- if not ATOMIC_ADD:
271
- if EVEN_M & EVEN_HEADDIM:
272
- dq = tl.load(dq_ptrs, eviction_policy='evict_last')
273
- dq += tl.dot(ds, k)
274
- tl.store(dq_ptrs, dq, eviction_policy='evict_last')
275
- elif EVEN_HEADDIM:
276
- dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
277
- dq += tl.dot(ds, k)
278
- tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
279
- else:
280
- dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
281
- dq += tl.dot(ds, k)
282
- tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
283
- else:
284
- dq = tl.dot(ds, k)
285
- if EVEN_M & EVEN_HEADDIM:
286
- tl.atomic_add(dq_ptrs, dq)
287
- elif EVEN_HEADDIM:
288
- tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
289
- else:
290
- tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
291
- dq_ptrs += BLOCK_M * stride_dqm
292
- q_ptrs += BLOCK_M * stride_qm
293
- do_ptrs += BLOCK_M * stride_dom
294
- if BIAS_TYPE == 'matrix':
295
- b_ptrs += BLOCK_M * stride_bm
296
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
297
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
298
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
299
-
300
- def init_to_zero(name):
301
- return lambda nargs: nargs[name].zero_()
302
-
303
- @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
304
- @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
305
- @triton.jit
306
- def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
307
- off_hb = tl.program_id(1)
308
- off_b = off_hb // nheads
309
- off_h = off_hb % nheads
310
- Q += off_b * stride_qb + off_h * stride_qh
311
- K += off_b * stride_kb + off_h * stride_kh
312
- V += off_b * stride_vb + off_h * stride_vh
313
- DO += off_b * stride_dob + off_h * stride_doh
314
- DQ += off_b * stride_dqb + off_h * stride_dqh
315
- DK += off_b * stride_dkb + off_h * stride_dkh
316
- DV += off_b * stride_dvb + off_h * stride_dvh
317
- if BIAS_TYPE != 'none':
318
- Bias += off_b * stride_bb + off_h * stride_bh
319
- D += off_hb * seqlen_q_rounded
320
- LSE += off_hb * seqlen_q_rounded
321
- if not SEQUENCE_PARALLEL:
322
- num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
323
- for start_n in range(0, num_block_n):
324
- _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
325
- else:
326
- start_n = tl.program_id(0)
327
- _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
328
-
329
- def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
330
- (batch, seqlen_q, nheads, d) = q.shape
331
- (_, seqlen_k, _, _) = k.shape
332
- assert k.shape == (batch, seqlen_k, nheads, d)
333
- assert v.shape == (batch, seqlen_k, nheads, d)
334
- assert d <= 128, 'FlashAttention only support head dimensions up to 128'
335
- assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
336
- assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
337
- assert q.is_cuda and k.is_cuda and v.is_cuda
338
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
339
- has_bias = bias is not None
340
- bias_type = 'none'
341
- if has_bias:
342
- assert bias.dtype in [q.dtype, torch.float]
343
- assert bias.is_cuda
344
- assert bias.dim() == 4
345
- if bias.stride(-1) != 1:
346
- bias = bias.contiguous()
347
- if bias.shape[2:] == (1, seqlen_k):
348
- bias_type = 'vector'
349
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
350
- bias_type = 'matrix'
351
- else:
352
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
353
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
354
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
355
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
356
- lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
357
- tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
358
- o = torch.empty_like(q)
359
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
360
- BLOCK = 128
361
- num_warps = 4 if d <= 64 else 8
362
- grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
363
- _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
364
- return (o, lse, softmax_scale)
365
-
366
- def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
367
- if do.stride(-1) != 1:
368
- do = do.contiguous()
369
- (batch, seqlen_q, nheads, d) = q.shape
370
- (_, seqlen_k, _, _) = k.shape
371
- assert d <= 128
372
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
373
- assert lse.shape == (batch, nheads, seqlen_q_rounded)
374
- assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
375
- assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
376
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
377
- dq_accum = torch.empty_like(q, dtype=torch.float32)
378
- delta = torch.empty_like(lse)
379
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
380
- grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
381
- _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
382
- has_bias = bias is not None
383
- bias_type = 'none'
384
- if has_bias:
385
- assert bias.dtype in [q.dtype, torch.float]
386
- assert bias.is_cuda
387
- assert bias.dim() == 4
388
- assert bias.stride(-1) == 1
389
- if bias.shape[2:] == (1, seqlen_k):
390
- bias_type = 'vector'
391
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
392
- bias_type = 'matrix'
393
- else:
394
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
395
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
396
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
397
- grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
398
- _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
399
- dq.copy_(dq_accum)
400
-
401
- class FlashAttnQKVPackedFunc(torch.autograd.Function):
402
-
403
- @staticmethod
404
- def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
405
- """
406
- qkv: (batch, seqlen, 3, nheads, headdim)
407
- bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
408
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
409
- ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
410
- """
411
- if qkv.stride(-1) != 1:
412
- qkv = qkv.contiguous()
413
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
414
- ctx.save_for_backward(qkv, o, lse, bias)
415
- ctx.causal = causal
416
- return o
417
-
418
- @staticmethod
419
- def backward(ctx, do):
420
- (qkv, o, lse, bias) = ctx.saved_tensors
421
- assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
422
- with torch.inference_mode():
423
- dqkv = torch.empty_like(qkv)
424
- _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
425
- return (dqkv, None, None, None)
426
- flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
427
-
428
- class FlashAttnKVPackedFunc(torch.autograd.Function):
429
-
430
- @staticmethod
431
- def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
432
- """
433
- q: (batch, seqlen_q, nheads, headdim)
434
- kv: (batch, seqlen_k, 2, nheads, headdim)
435
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
436
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
437
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
438
- """
439
- (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
440
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
441
- ctx.save_for_backward(q, kv, o, lse, bias)
442
- ctx.causal = causal
443
- return o
444
-
445
- @staticmethod
446
- def backward(ctx, do):
447
- (q, kv, o, lse, bias) = ctx.saved_tensors
448
- if len(ctx.needs_input_grad) >= 3:
449
- assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
450
- with torch.inference_mode():
451
- dq = torch.empty_like(q)
452
- dkv = torch.empty_like(kv)
453
- _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
454
- return (dq, dkv, None, None, None)
455
- flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
456
-
457
- class FlashAttnFunc(torch.autograd.Function):
458
-
459
- @staticmethod
460
- def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
461
- """
462
- q: (batch_size, seqlen_q, nheads, headdim)
463
- k, v: (batch_size, seqlen_k, nheads, headdim)
464
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
465
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
466
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
467
- """
468
- (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
469
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
470
- ctx.save_for_backward(q, k, v, o, lse, bias)
471
- ctx.causal = causal
472
- return o
473
-
474
- @staticmethod
475
- def backward(ctx, do):
476
- (q, k, v, o, lse, bias) = ctx.saved_tensors
477
- assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
478
- with torch.inference_mode():
479
- dq = torch.empty_like(q)
480
- dk = torch.empty_like(k)
481
- dv = torch.empty_like(v)
482
- _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
483
- return (dq, dk, dv, None, None, None)
484
- flash_attn_func = FlashAttnFunc.apply
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/generation_config.json DELETED
@@ -1,6 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "eos_token_id": 0,
4
- "transformers_version": "4.31.0",
5
- "use_cache": false
6
- }
 
 
 
 
 
 
 
base_model/hf_prefixlm_converter.py DELETED
@@ -1,180 +0,0 @@
1
- """Converts Huggingface Causal LM to Prefix LM.
2
-
3
- Conversion does lightweight surgery on a HuggingFace
4
- Causal LM to convert it to a Prefix LM.
5
-
6
- Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
- and treat the input prompt as the prefix in `generate`.
8
- """
9
- from types import MethodType
10
- from typing import Any, List, MutableMapping, Optional, Tuple, Union
11
- import torch
12
- from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
13
- from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
14
- from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
15
- from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
16
- _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
17
- CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
18
-
19
- def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
20
- """Converts a GPT-style Causal LM to a Prefix LM.
21
-
22
- Supported HuggingFace model classes:
23
- - `GPT2LMHeadModel`
24
- - `GPTNeoForCausalLM`
25
- - `GPTNeoXForCausalLM`
26
- - `GPTJForCausalLM`
27
-
28
- See `convert_hf_causal_lm_to_prefix_lm` for more details.
29
- """
30
- if hasattr(model, '_prefix_lm_converted'):
31
- return model
32
- assert isinstance(model, _SUPPORTED_GPT_MODELS)
33
- assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
34
-
35
- def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
36
- """Helper that gets a list of the model's attention modules.
37
-
38
- Each module has a `bias` buffer used for causal masking. The Prefix LM
39
- conversion adds logic to dynamically manipulate these biases to support
40
- Prefix LM attention masking.
41
- """
42
- attn_modules = []
43
- if isinstance(model, GPTNeoXForCausalLM):
44
- blocks = model.gpt_neox.layers
45
- else:
46
- blocks = model.transformer.h
47
- for block in blocks:
48
- if isinstance(model, GPTNeoForCausalLM):
49
- if block.attn.attention_type != 'global':
50
- continue
51
- attn_module = block.attn.attention
52
- elif isinstance(model, GPTNeoXForCausalLM):
53
- attn_module = block.attention
54
- else:
55
- attn_module = block.attn
56
- attn_modules.append(attn_module)
57
- return attn_modules
58
- setattr(model, '_original_forward', getattr(model, 'forward'))
59
- setattr(model, '_original_generate', getattr(model, 'generate'))
60
-
61
- def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
62
- """Wraps original forward to enable PrefixLM attention."""
63
-
64
- def call_og_forward():
65
- if isinstance(self, GPTNeoXForCausalLM):
66
- return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
67
- else:
68
- return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
69
- if bidirectional_mask is None:
70
- return call_og_forward()
71
- assert isinstance(bidirectional_mask, torch.Tensor)
72
- attn_modules = _get_attn_modules(model)
73
- (b, s) = bidirectional_mask.shape
74
- max_length = attn_modules[0].bias.shape[-1]
75
- if s > max_length:
76
- raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
77
- assert s <= max_length
78
- if s < max_length:
79
- pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
80
- bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
81
- bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
82
- for attn_module in attn_modules:
83
- assert isinstance(attn_module.bias, torch.Tensor)
84
- attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
85
- output = call_og_forward()
86
- for attn_module in attn_modules:
87
- attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
88
- return output
89
-
90
- def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
91
- """Wraps original generate to enable PrefixLM attention."""
92
- attn_modules = _get_attn_modules(model)
93
- for attn_module in attn_modules:
94
- attn_module.bias.data[:] = 1
95
- output = self._original_generate(*args, **kwargs)
96
- for attn_module in attn_modules:
97
- attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
98
- return output
99
- setattr(model, 'forward', MethodType(forward, model))
100
- setattr(model, 'generate', MethodType(generate, model))
101
- setattr(model, '_prefix_lm_converted', True)
102
- return model
103
- _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
104
- CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
105
-
106
- def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
107
- """Converts a HuggingFace Causal LM to a Prefix LM.
108
-
109
- Supported HuggingFace model classes:
110
- - `GPT2LMHeadModel`
111
- - `GPTNeoForCausalLM`
112
- - `GPTNeoXForCausalLM`
113
- - `GPTJForCausalLM`
114
-
115
- Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
116
- `generate` method and/or select underlying methods depending on the model class.
117
-
118
- These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
119
-
120
- Notes on training:
121
- To actually train the converted model as a Prefix LM, training batches will need to indicate
122
- the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
123
-
124
- **This is not a standard input and requires custom layers either within or after your dataloader.**
125
-
126
- In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
127
- such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
128
- That is, the prefix portion of the sequence should not generate any loss. Loss should only be
129
- generated by the target portion of the sequence.
130
-
131
- Notes on `GPTNeoForCausalLM`:
132
- To simplify the implementation, "global" and "local" attention layers are handled differently.
133
- For "global" layers, we handle conversion as described above. For "local" layers, which use a
134
- causal attention mask within a restricted local window, we do not alter the masking.
135
-
136
- Notes on `forward` method conversion:
137
- After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
138
- which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
139
- belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
140
- 0 indicates token positions belonging to the target.
141
-
142
- The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
143
- causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
144
- the causal masks before returning the result.
145
-
146
- Notes on `generate` method conversion:
147
- After conversion, the `generate` method will have the same signature but will internally
148
- convert all causal masks to be purely bidirectional, call the original `generate` method, and
149
- (where appropriate) reset the causal masks before returning the result.
150
-
151
- This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
152
- "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
153
- each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
154
- another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
155
- previously-generated tokens (also as expected in a Prefix LM).
156
-
157
- To preserve the API, the original methods are renamed to `_original_forward` and
158
- `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
159
- them, respectively. Although implementation details vary by model class.
160
- """
161
- if isinstance(model, _SUPPORTED_GPT_MODELS):
162
- return _convert_gpt_causal_lm_to_prefix_lm(model)
163
- else:
164
- raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
165
-
166
- def add_bidirectional_mask_if_missing(batch: MutableMapping):
167
- """Attempts to add bidirectional_mask to batch if missing.
168
-
169
- Raises:
170
- KeyError if bidirectional_mask is missing and can't be inferred
171
- """
172
- if 'bidirectional_mask' not in batch:
173
- if batch.get('mode', None) == 'icl_task':
174
- batch['bidirectional_mask'] = batch['attention_mask'].clone()
175
- for (i, continuation_indices) in enumerate(batch['continuation_indices']):
176
- batch['bidirectional_mask'][i, continuation_indices] = 0
177
- elif 'labels' in batch and 'attention_mask' in batch:
178
- batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
179
- else:
180
- raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/meta_init_context.py DELETED
@@ -1,99 +0,0 @@
1
- from contextlib import contextmanager
2
- from typing import Any, Callable, Optional
3
- import torch
4
- import torch.nn as nn
5
-
6
- @contextmanager
7
- def init_empty_weights(include_buffers: bool=False):
8
- """Meta initialization context manager.
9
-
10
- A context manager under which models are initialized with all parameters
11
- on the meta device, therefore creating an empty model. Useful when just
12
- initializing the model would blow the available RAM.
13
-
14
- Args:
15
- include_buffers (`bool`, *optional*, defaults to `False`): Whether or
16
- not to also put all buffers on the meta device while initializing.
17
-
18
- Example:
19
- ```python
20
- import torch.nn as nn
21
-
22
- # Initialize a model with 100 billions parameters in no time and without using any RAM.
23
- with init_empty_weights():
24
- tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
25
- ```
26
-
27
- <Tip warning={true}>
28
-
29
- Any model created under this context manager has no weights. As such you can't do something like
30
- `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
31
-
32
- </Tip>
33
- """
34
- with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
35
- yield f
36
-
37
- @contextmanager
38
- def init_on_device(device: torch.device, include_buffers: bool=False):
39
- """Device initialization context manager.
40
-
41
- A context manager under which models are initialized with all parameters
42
- on the specified device.
43
-
44
- Args:
45
- device (`torch.device`): Device to initialize all parameters on.
46
- include_buffers (`bool`, *optional*, defaults to `False`): Whether or
47
- not to also put all buffers on the meta device while initializing.
48
-
49
- Example:
50
- ```python
51
- import torch.nn as nn
52
-
53
- with init_on_device(device=torch.device("cuda")):
54
- tst = nn.Liner(100, 100) # on `cuda` device
55
- ```
56
- """
57
- old_register_parameter = nn.Module.register_parameter
58
- if include_buffers:
59
- old_register_buffer = nn.Module.register_buffer
60
-
61
- def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
62
- old_register_parameter(self, name, param)
63
- if param is not None:
64
- parameter = self._parameters[name]
65
- assert parameter is not None
66
- param_cls = type(parameter)
67
- kwargs = parameter.__dict__
68
- self._parameters[name] = param_cls(parameter.to(device), **kwargs)
69
-
70
- def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
71
- old_register_buffer(self, name, tensor, persistent=persistent)
72
- if tensor is not None:
73
- named_buffer = self._buffers[name]
74
- assert named_buffer is not None
75
- self._buffers[name] = named_buffer.to(device)
76
- if include_buffers:
77
- tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
78
- else:
79
- tensor_constructors_to_patch = {}
80
-
81
- def patch_tensor_constructor(fn: Callable):
82
-
83
- def wrapper(*args: Any, **kwargs: Any):
84
- kwargs['device'] = device
85
- return fn(*args, **kwargs)
86
- return wrapper
87
- try:
88
- nn.Module.register_parameter = register_empty_parameter
89
- if include_buffers:
90
- nn.Module.register_buffer = register_empty_buffer
91
- for torch_function_name in tensor_constructors_to_patch.keys():
92
- setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
93
- yield
94
- finally:
95
- nn.Module.register_parameter = old_register_parameter
96
- if include_buffers:
97
- nn.Module.register_buffer = old_register_buffer
98
- for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
99
- setattr(torch, torch_function_name, old_torch_function)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0c1348d8db16497ff03c724f09623b90bd21e48a91c81232983b50f15ee7ca6
3
- size 9943013056
 
 
 
 
base_model/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdcf24e51c0fcfce259249192e20a29b85d41c44a0693235aba6fc9663ce86b1
3
- size 3355590120
 
 
 
 
base_model/model.safetensors.index.json DELETED
@@ -1,265 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 13298573312
4
- },
5
- "weight_map": {
6
- "transformer.blocks.0.attn.k_proj.weight": "model-00001-of-00002.safetensors",
7
- "transformer.blocks.0.attn.out_proj.weight": "model-00001-of-00002.safetensors",
8
- "transformer.blocks.0.attn.q_proj.weight": "model-00001-of-00002.safetensors",
9
- "transformer.blocks.0.attn.v_proj.weight": "model-00001-of-00002.safetensors",
10
- "transformer.blocks.0.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
11
- "transformer.blocks.0.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "transformer.blocks.0.norm_1.weight": "model-00001-of-00002.safetensors",
13
- "transformer.blocks.0.norm_2.weight": "model-00001-of-00002.safetensors",
14
- "transformer.blocks.1.attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
- "transformer.blocks.1.attn.out_proj.weight": "model-00001-of-00002.safetensors",
16
- "transformer.blocks.1.attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
- "transformer.blocks.1.attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
- "transformer.blocks.1.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
19
- "transformer.blocks.1.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
20
- "transformer.blocks.1.norm_1.weight": "model-00001-of-00002.safetensors",
21
- "transformer.blocks.1.norm_2.weight": "model-00001-of-00002.safetensors",
22
- "transformer.blocks.10.attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
- "transformer.blocks.10.attn.out_proj.weight": "model-00001-of-00002.safetensors",
24
- "transformer.blocks.10.attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
- "transformer.blocks.10.attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
- "transformer.blocks.10.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
27
- "transformer.blocks.10.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
28
- "transformer.blocks.10.norm_1.weight": "model-00001-of-00002.safetensors",
29
- "transformer.blocks.10.norm_2.weight": "model-00001-of-00002.safetensors",
30
- "transformer.blocks.11.attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
- "transformer.blocks.11.attn.out_proj.weight": "model-00001-of-00002.safetensors",
32
- "transformer.blocks.11.attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
- "transformer.blocks.11.attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
- "transformer.blocks.11.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
35
- "transformer.blocks.11.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
36
- "transformer.blocks.11.norm_1.weight": "model-00001-of-00002.safetensors",
37
- "transformer.blocks.11.norm_2.weight": "model-00001-of-00002.safetensors",
38
- "transformer.blocks.12.attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
- "transformer.blocks.12.attn.out_proj.weight": "model-00001-of-00002.safetensors",
40
- "transformer.blocks.12.attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
- "transformer.blocks.12.attn.v_proj.weight": "model-00001-of-00002.safetensors",
42
- "transformer.blocks.12.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
43
- "transformer.blocks.12.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
44
- "transformer.blocks.12.norm_1.weight": "model-00001-of-00002.safetensors",
45
- "transformer.blocks.12.norm_2.weight": "model-00001-of-00002.safetensors",
46
- "transformer.blocks.13.attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
- "transformer.blocks.13.attn.out_proj.weight": "model-00001-of-00002.safetensors",
48
- "transformer.blocks.13.attn.q_proj.weight": "model-00001-of-00002.safetensors",
49
- "transformer.blocks.13.attn.v_proj.weight": "model-00001-of-00002.safetensors",
50
- "transformer.blocks.13.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
51
- "transformer.blocks.13.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
52
- "transformer.blocks.13.norm_1.weight": "model-00001-of-00002.safetensors",
53
- "transformer.blocks.13.norm_2.weight": "model-00001-of-00002.safetensors",
54
- "transformer.blocks.14.attn.k_proj.weight": "model-00001-of-00002.safetensors",
55
- "transformer.blocks.14.attn.out_proj.weight": "model-00001-of-00002.safetensors",
56
- "transformer.blocks.14.attn.q_proj.weight": "model-00001-of-00002.safetensors",
57
- "transformer.blocks.14.attn.v_proj.weight": "model-00001-of-00002.safetensors",
58
- "transformer.blocks.14.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
59
- "transformer.blocks.14.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
60
- "transformer.blocks.14.norm_1.weight": "model-00001-of-00002.safetensors",
61
- "transformer.blocks.14.norm_2.weight": "model-00001-of-00002.safetensors",
62
- "transformer.blocks.15.attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "transformer.blocks.15.attn.out_proj.weight": "model-00001-of-00002.safetensors",
64
- "transformer.blocks.15.attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
- "transformer.blocks.15.attn.v_proj.weight": "model-00001-of-00002.safetensors",
66
- "transformer.blocks.15.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
67
- "transformer.blocks.15.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
68
- "transformer.blocks.15.norm_1.weight": "model-00001-of-00002.safetensors",
69
- "transformer.blocks.15.norm_2.weight": "model-00001-of-00002.safetensors",
70
- "transformer.blocks.16.attn.k_proj.weight": "model-00001-of-00002.safetensors",
71
- "transformer.blocks.16.attn.out_proj.weight": "model-00001-of-00002.safetensors",
72
- "transformer.blocks.16.attn.q_proj.weight": "model-00001-of-00002.safetensors",
73
- "transformer.blocks.16.attn.v_proj.weight": "model-00001-of-00002.safetensors",
74
- "transformer.blocks.16.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
75
- "transformer.blocks.16.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
76
- "transformer.blocks.16.norm_1.weight": "model-00001-of-00002.safetensors",
77
- "transformer.blocks.16.norm_2.weight": "model-00001-of-00002.safetensors",
78
- "transformer.blocks.17.attn.k_proj.weight": "model-00001-of-00002.safetensors",
79
- "transformer.blocks.17.attn.out_proj.weight": "model-00001-of-00002.safetensors",
80
- "transformer.blocks.17.attn.q_proj.weight": "model-00001-of-00002.safetensors",
81
- "transformer.blocks.17.attn.v_proj.weight": "model-00001-of-00002.safetensors",
82
- "transformer.blocks.17.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
83
- "transformer.blocks.17.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "transformer.blocks.17.norm_1.weight": "model-00001-of-00002.safetensors",
85
- "transformer.blocks.17.norm_2.weight": "model-00001-of-00002.safetensors",
86
- "transformer.blocks.18.attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
- "transformer.blocks.18.attn.out_proj.weight": "model-00001-of-00002.safetensors",
88
- "transformer.blocks.18.attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
- "transformer.blocks.18.attn.v_proj.weight": "model-00001-of-00002.safetensors",
90
- "transformer.blocks.18.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
91
- "transformer.blocks.18.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
92
- "transformer.blocks.18.norm_1.weight": "model-00001-of-00002.safetensors",
93
- "transformer.blocks.18.norm_2.weight": "model-00001-of-00002.safetensors",
94
- "transformer.blocks.19.attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
- "transformer.blocks.19.attn.out_proj.weight": "model-00001-of-00002.safetensors",
96
- "transformer.blocks.19.attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
- "transformer.blocks.19.attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
- "transformer.blocks.19.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
99
- "transformer.blocks.19.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
100
- "transformer.blocks.19.norm_1.weight": "model-00001-of-00002.safetensors",
101
- "transformer.blocks.19.norm_2.weight": "model-00001-of-00002.safetensors",
102
- "transformer.blocks.2.attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
- "transformer.blocks.2.attn.out_proj.weight": "model-00001-of-00002.safetensors",
104
- "transformer.blocks.2.attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
- "transformer.blocks.2.attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
- "transformer.blocks.2.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
107
- "transformer.blocks.2.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
108
- "transformer.blocks.2.norm_1.weight": "model-00001-of-00002.safetensors",
109
- "transformer.blocks.2.norm_2.weight": "model-00001-of-00002.safetensors",
110
- "transformer.blocks.20.attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
- "transformer.blocks.20.attn.out_proj.weight": "model-00001-of-00002.safetensors",
112
- "transformer.blocks.20.attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
- "transformer.blocks.20.attn.v_proj.weight": "model-00001-of-00002.safetensors",
114
- "transformer.blocks.20.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
115
- "transformer.blocks.20.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
116
- "transformer.blocks.20.norm_1.weight": "model-00001-of-00002.safetensors",
117
- "transformer.blocks.20.norm_2.weight": "model-00001-of-00002.safetensors",
118
- "transformer.blocks.21.attn.k_proj.weight": "model-00001-of-00002.safetensors",
119
- "transformer.blocks.21.attn.out_proj.weight": "model-00001-of-00002.safetensors",
120
- "transformer.blocks.21.attn.q_proj.weight": "model-00001-of-00002.safetensors",
121
- "transformer.blocks.21.attn.v_proj.weight": "model-00001-of-00002.safetensors",
122
- "transformer.blocks.21.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
123
- "transformer.blocks.21.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
124
- "transformer.blocks.21.norm_1.weight": "model-00001-of-00002.safetensors",
125
- "transformer.blocks.21.norm_2.weight": "model-00001-of-00002.safetensors",
126
- "transformer.blocks.22.attn.k_proj.weight": "model-00001-of-00002.safetensors",
127
- "transformer.blocks.22.attn.out_proj.weight": "model-00001-of-00002.safetensors",
128
- "transformer.blocks.22.attn.q_proj.weight": "model-00001-of-00002.safetensors",
129
- "transformer.blocks.22.attn.v_proj.weight": "model-00001-of-00002.safetensors",
130
- "transformer.blocks.22.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
131
- "transformer.blocks.22.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
132
- "transformer.blocks.22.norm_1.weight": "model-00001-of-00002.safetensors",
133
- "transformer.blocks.22.norm_2.weight": "model-00001-of-00002.safetensors",
134
- "transformer.blocks.23.attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
- "transformer.blocks.23.attn.out_proj.weight": "model-00001-of-00002.safetensors",
136
- "transformer.blocks.23.attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
- "transformer.blocks.23.attn.v_proj.weight": "model-00001-of-00002.safetensors",
138
- "transformer.blocks.23.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
139
- "transformer.blocks.23.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
140
- "transformer.blocks.23.norm_1.weight": "model-00001-of-00002.safetensors",
141
- "transformer.blocks.23.norm_2.weight": "model-00001-of-00002.safetensors",
142
- "transformer.blocks.24.attn.k_proj.weight": "model-00002-of-00002.safetensors",
143
- "transformer.blocks.24.attn.out_proj.weight": "model-00002-of-00002.safetensors",
144
- "transformer.blocks.24.attn.q_proj.weight": "model-00002-of-00002.safetensors",
145
- "transformer.blocks.24.attn.v_proj.weight": "model-00002-of-00002.safetensors",
146
- "transformer.blocks.24.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
147
- "transformer.blocks.24.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
148
- "transformer.blocks.24.norm_1.weight": "model-00002-of-00002.safetensors",
149
- "transformer.blocks.24.norm_2.weight": "model-00002-of-00002.safetensors",
150
- "transformer.blocks.25.attn.k_proj.weight": "model-00002-of-00002.safetensors",
151
- "transformer.blocks.25.attn.out_proj.weight": "model-00002-of-00002.safetensors",
152
- "transformer.blocks.25.attn.q_proj.weight": "model-00002-of-00002.safetensors",
153
- "transformer.blocks.25.attn.v_proj.weight": "model-00002-of-00002.safetensors",
154
- "transformer.blocks.25.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
155
- "transformer.blocks.25.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
156
- "transformer.blocks.25.norm_1.weight": "model-00002-of-00002.safetensors",
157
- "transformer.blocks.25.norm_2.weight": "model-00002-of-00002.safetensors",
158
- "transformer.blocks.26.attn.k_proj.weight": "model-00002-of-00002.safetensors",
159
- "transformer.blocks.26.attn.out_proj.weight": "model-00002-of-00002.safetensors",
160
- "transformer.blocks.26.attn.q_proj.weight": "model-00002-of-00002.safetensors",
161
- "transformer.blocks.26.attn.v_proj.weight": "model-00002-of-00002.safetensors",
162
- "transformer.blocks.26.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
163
- "transformer.blocks.26.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
164
- "transformer.blocks.26.norm_1.weight": "model-00002-of-00002.safetensors",
165
- "transformer.blocks.26.norm_2.weight": "model-00002-of-00002.safetensors",
166
- "transformer.blocks.27.attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
- "transformer.blocks.27.attn.out_proj.weight": "model-00002-of-00002.safetensors",
168
- "transformer.blocks.27.attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
- "transformer.blocks.27.attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
- "transformer.blocks.27.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
171
- "transformer.blocks.27.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
172
- "transformer.blocks.27.norm_1.weight": "model-00002-of-00002.safetensors",
173
- "transformer.blocks.27.norm_2.weight": "model-00002-of-00002.safetensors",
174
- "transformer.blocks.28.attn.k_proj.weight": "model-00002-of-00002.safetensors",
175
- "transformer.blocks.28.attn.out_proj.weight": "model-00002-of-00002.safetensors",
176
- "transformer.blocks.28.attn.q_proj.weight": "model-00002-of-00002.safetensors",
177
- "transformer.blocks.28.attn.v_proj.weight": "model-00002-of-00002.safetensors",
178
- "transformer.blocks.28.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
179
- "transformer.blocks.28.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
180
- "transformer.blocks.28.norm_1.weight": "model-00002-of-00002.safetensors",
181
- "transformer.blocks.28.norm_2.weight": "model-00002-of-00002.safetensors",
182
- "transformer.blocks.29.attn.k_proj.weight": "model-00002-of-00002.safetensors",
183
- "transformer.blocks.29.attn.out_proj.weight": "model-00002-of-00002.safetensors",
184
- "transformer.blocks.29.attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
- "transformer.blocks.29.attn.v_proj.weight": "model-00002-of-00002.safetensors",
186
- "transformer.blocks.29.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
187
- "transformer.blocks.29.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
188
- "transformer.blocks.29.norm_1.weight": "model-00002-of-00002.safetensors",
189
- "transformer.blocks.29.norm_2.weight": "model-00002-of-00002.safetensors",
190
- "transformer.blocks.3.attn.k_proj.weight": "model-00001-of-00002.safetensors",
191
- "transformer.blocks.3.attn.out_proj.weight": "model-00001-of-00002.safetensors",
192
- "transformer.blocks.3.attn.q_proj.weight": "model-00001-of-00002.safetensors",
193
- "transformer.blocks.3.attn.v_proj.weight": "model-00001-of-00002.safetensors",
194
- "transformer.blocks.3.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
195
- "transformer.blocks.3.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
196
- "transformer.blocks.3.norm_1.weight": "model-00001-of-00002.safetensors",
197
- "transformer.blocks.3.norm_2.weight": "model-00001-of-00002.safetensors",
198
- "transformer.blocks.30.attn.k_proj.weight": "model-00002-of-00002.safetensors",
199
- "transformer.blocks.30.attn.out_proj.weight": "model-00002-of-00002.safetensors",
200
- "transformer.blocks.30.attn.q_proj.weight": "model-00002-of-00002.safetensors",
201
- "transformer.blocks.30.attn.v_proj.weight": "model-00002-of-00002.safetensors",
202
- "transformer.blocks.30.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
203
- "transformer.blocks.30.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
204
- "transformer.blocks.30.norm_1.weight": "model-00002-of-00002.safetensors",
205
- "transformer.blocks.30.norm_2.weight": "model-00002-of-00002.safetensors",
206
- "transformer.blocks.31.attn.k_proj.weight": "model-00002-of-00002.safetensors",
207
- "transformer.blocks.31.attn.out_proj.weight": "model-00002-of-00002.safetensors",
208
- "transformer.blocks.31.attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
- "transformer.blocks.31.attn.v_proj.weight": "model-00002-of-00002.safetensors",
210
- "transformer.blocks.31.ffn.down_proj.weight": "model-00002-of-00002.safetensors",
211
- "transformer.blocks.31.ffn.up_proj.weight": "model-00002-of-00002.safetensors",
212
- "transformer.blocks.31.norm_1.weight": "model-00002-of-00002.safetensors",
213
- "transformer.blocks.31.norm_2.weight": "model-00002-of-00002.safetensors",
214
- "transformer.blocks.4.attn.k_proj.weight": "model-00001-of-00002.safetensors",
215
- "transformer.blocks.4.attn.out_proj.weight": "model-00001-of-00002.safetensors",
216
- "transformer.blocks.4.attn.q_proj.weight": "model-00001-of-00002.safetensors",
217
- "transformer.blocks.4.attn.v_proj.weight": "model-00001-of-00002.safetensors",
218
- "transformer.blocks.4.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
219
- "transformer.blocks.4.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
220
- "transformer.blocks.4.norm_1.weight": "model-00001-of-00002.safetensors",
221
- "transformer.blocks.4.norm_2.weight": "model-00001-of-00002.safetensors",
222
- "transformer.blocks.5.attn.k_proj.weight": "model-00001-of-00002.safetensors",
223
- "transformer.blocks.5.attn.out_proj.weight": "model-00001-of-00002.safetensors",
224
- "transformer.blocks.5.attn.q_proj.weight": "model-00001-of-00002.safetensors",
225
- "transformer.blocks.5.attn.v_proj.weight": "model-00001-of-00002.safetensors",
226
- "transformer.blocks.5.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
227
- "transformer.blocks.5.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
228
- "transformer.blocks.5.norm_1.weight": "model-00001-of-00002.safetensors",
229
- "transformer.blocks.5.norm_2.weight": "model-00001-of-00002.safetensors",
230
- "transformer.blocks.6.attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "transformer.blocks.6.attn.out_proj.weight": "model-00001-of-00002.safetensors",
232
- "transformer.blocks.6.attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
- "transformer.blocks.6.attn.v_proj.weight": "model-00001-of-00002.safetensors",
234
- "transformer.blocks.6.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
235
- "transformer.blocks.6.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
236
- "transformer.blocks.6.norm_1.weight": "model-00001-of-00002.safetensors",
237
- "transformer.blocks.6.norm_2.weight": "model-00001-of-00002.safetensors",
238
- "transformer.blocks.7.attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
- "transformer.blocks.7.attn.out_proj.weight": "model-00001-of-00002.safetensors",
240
- "transformer.blocks.7.attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
- "transformer.blocks.7.attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
- "transformer.blocks.7.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
243
- "transformer.blocks.7.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
244
- "transformer.blocks.7.norm_1.weight": "model-00001-of-00002.safetensors",
245
- "transformer.blocks.7.norm_2.weight": "model-00001-of-00002.safetensors",
246
- "transformer.blocks.8.attn.k_proj.weight": "model-00001-of-00002.safetensors",
247
- "transformer.blocks.8.attn.out_proj.weight": "model-00001-of-00002.safetensors",
248
- "transformer.blocks.8.attn.q_proj.weight": "model-00001-of-00002.safetensors",
249
- "transformer.blocks.8.attn.v_proj.weight": "model-00001-of-00002.safetensors",
250
- "transformer.blocks.8.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
251
- "transformer.blocks.8.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
252
- "transformer.blocks.8.norm_1.weight": "model-00001-of-00002.safetensors",
253
- "transformer.blocks.8.norm_2.weight": "model-00001-of-00002.safetensors",
254
- "transformer.blocks.9.attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
- "transformer.blocks.9.attn.out_proj.weight": "model-00001-of-00002.safetensors",
256
- "transformer.blocks.9.attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
- "transformer.blocks.9.attn.v_proj.weight": "model-00001-of-00002.safetensors",
258
- "transformer.blocks.9.ffn.down_proj.weight": "model-00001-of-00002.safetensors",
259
- "transformer.blocks.9.ffn.up_proj.weight": "model-00001-of-00002.safetensors",
260
- "transformer.blocks.9.norm_1.weight": "model-00001-of-00002.safetensors",
261
- "transformer.blocks.9.norm_2.weight": "model-00001-of-00002.safetensors",
262
- "transformer.norm_f.weight": "model-00002-of-00002.safetensors",
263
- "transformer.wte.weight": "model-00001-of-00002.safetensors"
264
- }
265
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/modeling_mpt.py DELETED
@@ -1,327 +0,0 @@
1
- """A simple, flexible implementation of a GPT model.
2
-
3
- Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
- """
5
- import math
6
- import warnings
7
- from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from transformers import PreTrainedModel, PreTrainedTokenizerBase
12
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
- from .attention import attn_bias_shape, build_attn_bias
14
- from .blocks import MPTBlock
15
- from .custom_embedding import SharedEmbedding
16
- from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
17
- from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
18
- from .ffn import MPTMLP as MPTMLP
19
- from .ffn import build_ffn as build_ffn
20
- from .norm import NORM_CLASS_REGISTRY
21
- from .configuration_mpt import MPTConfig
22
- from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
23
- from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
24
- from .meta_init_context import init_empty_weights
25
- from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
26
- try:
27
- from .flash_attn_triton import flash_attn_func as flash_attn_func
28
- except:
29
- pass
30
- import logging
31
- log = logging.getLogger(__name__)
32
-
33
- class MPTPreTrainedModel(PreTrainedModel):
34
- config_class = MPTConfig
35
- base_model_prefix = 'model'
36
- _no_split_modules = ['MPTBlock']
37
-
38
- class MPTModel(MPTPreTrainedModel):
39
-
40
- def __init__(self, config: MPTConfig):
41
- config._validate_config()
42
- super().__init__(config)
43
- self.attn_impl = config.attn_config['attn_impl']
44
- self.prefix_lm = config.attn_config['prefix_lm']
45
- self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
46
- self.alibi = config.attn_config['alibi']
47
- self.alibi_bias_max = config.attn_config['alibi_bias_max']
48
- self.learned_pos_emb = config.learned_pos_emb
49
- if config.init_device == 'mixed':
50
- if dist.get_local_rank() == 0:
51
- config.init_device = 'cpu'
52
- else:
53
- config.init_device = 'meta'
54
- if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
55
- norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
56
- raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
57
- norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
58
- self.embedding_fraction = config.embedding_fraction
59
- self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
60
- if self.learned_pos_emb:
61
- self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
62
- self.emb_drop = nn.Dropout(config.emb_pdrop)
63
- self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
64
- self.norm_f = norm_class(config.d_model, device=config.init_device)
65
- if config.init_device != 'meta':
66
- log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
67
- self.apply(self.param_init_fn)
68
- self.is_causal = not self.prefix_lm
69
- self._attn_bias_initialized = False
70
- self.attn_bias = None
71
- self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
72
- if config.no_bias:
73
- for module in self.modules():
74
- if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
75
- log.info(f'Removing bias ({module.bias}) from {module}.')
76
- module.register_parameter('bias', None)
77
- if hasattr(module, 'use_bias'):
78
- log.info(f'Setting use_bias=False for {module}.')
79
- module.use_bias = False
80
- log.debug(self)
81
- log.debug(f"Using {self.config.init_config['name']} initialization.")
82
-
83
- def get_input_embeddings(self) -> nn.Embedding:
84
- return self.wte
85
-
86
- def set_input_embeddings(self, value: nn.Embedding) -> None:
87
- self.wte = value
88
-
89
- @torch.no_grad()
90
- def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
91
- if not self._attn_bias_initialized:
92
- if self.attn_bias_shape:
93
- self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
94
- self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
95
- self._attn_bias_initialized = True
96
- if self.attn_impl == 'flash':
97
- return (self.attn_bias, attention_mask)
98
- if self.attn_bias is not None:
99
- self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
100
- attn_bias = self.attn_bias
101
- if self.prefix_lm:
102
- assert isinstance(attn_bias, torch.Tensor)
103
- assert isinstance(prefix_mask, torch.Tensor)
104
- attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
105
- if self.attn_uses_sequence_id and sequence_id is not None:
106
- assert isinstance(attn_bias, torch.Tensor)
107
- attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
108
- if attention_mask is not None:
109
- s_k = attention_mask.shape[-1]
110
- if attn_bias is None:
111
- attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
112
- else:
113
- _s_k = max(0, attn_bias.size(-1) - s_k)
114
- attn_bias = attn_bias[:, :, :, _s_k:]
115
- if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
116
- raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
117
- min_val = torch.finfo(attn_bias.dtype).min
118
- attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
119
- return (attn_bias, None)
120
-
121
- def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
122
- (s_k, s_q) = attn_bias.shape[-2:]
123
- if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
124
- raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
125
- seq_len = prefix_mask.shape[-1]
126
- if seq_len > self.config.max_seq_len:
127
- raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
128
- attn_bias = attn_bias[..., :seq_len, :seq_len]
129
- causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
130
- prefix = prefix_mask.view(-1, 1, 1, seq_len)
131
- cannot_attend = ~torch.logical_or(causal, prefix.bool())
132
- min_val = torch.finfo(attn_bias.dtype).min
133
- attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
134
- return attn_bias
135
-
136
- def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor) -> torch.Tensor:
137
- seq_len = sequence_id.shape[-1]
138
- if seq_len > self.config.max_seq_len:
139
- raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
140
- attn_bias = attn_bias[..., :seq_len, :seq_len]
141
- cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
142
- min_val = torch.finfo(attn_bias.dtype).min
143
- attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
144
- return attn_bias
145
-
146
- def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
147
- return_dict = return_dict if return_dict is not None else self.config.return_dict
148
- use_cache = use_cache if use_cache is not None else self.config.use_cache
149
- if attention_mask is not None:
150
- attention_mask = attention_mask.bool()
151
- if prefix_mask is not None:
152
- prefix_mask = prefix_mask.bool()
153
- if not return_dict:
154
- raise NotImplementedError('return_dict False is not implemented yet for MPT')
155
- if output_attentions:
156
- if self.attn_impl != 'torch':
157
- raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
158
- if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
159
- raise NotImplementedError('MPT does not support training with left padding.')
160
- if self.prefix_lm and prefix_mask is None:
161
- raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
162
- if inputs_embeds is not None:
163
- raise NotImplementedError('inputs_embeds is not implemented for MPT.')
164
- if self.training:
165
- if self.attn_uses_sequence_id and sequence_id is None:
166
- raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
167
- elif self.attn_uses_sequence_id is False and sequence_id is not None:
168
- warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
169
- S = input_ids.size(1)
170
- assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
171
- tok_emb = self.wte(input_ids)
172
- if self.learned_pos_emb:
173
- past_position = 0
174
- if past_key_values is not None:
175
- if len(past_key_values) != self.config.n_layers:
176
- raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
177
- past_position = past_key_values[0][0].size(1)
178
- if self.attn_impl == 'torch':
179
- past_position = past_key_values[0][0].size(3)
180
- if S + past_position > self.config.max_seq_len:
181
- raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
182
- pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
183
- if attention_mask is not None:
184
- pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
185
- pos_emb = self.wpe(pos)
186
- x = tok_emb + pos_emb
187
- else:
188
- x = tok_emb
189
- if self.embedding_fraction == 1:
190
- x = self.emb_drop(x)
191
- else:
192
- x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
193
- assert isinstance(self.emb_drop, nn.Module)
194
- x = self.emb_drop(x_shrunk)
195
- (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
196
- presents = () if use_cache else None
197
- if use_cache and past_key_values is None:
198
- past_key_values = [() for _ in range(self.config.n_layers)]
199
- all_hidden_states = () if output_hidden_states else None
200
- all_self_attns = () if output_attentions else None
201
- for (b_idx, block) in enumerate(self.blocks):
202
- if output_hidden_states:
203
- assert all_hidden_states is not None
204
- all_hidden_states = all_hidden_states + (x,)
205
- past_key_value = past_key_values[b_idx] if past_key_values is not None else None
206
- (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
207
- if presents is not None:
208
- presents += (present,)
209
- if output_attentions:
210
- assert all_self_attns is not None
211
- all_self_attns = all_self_attns + (attn_weights,)
212
- x = self.norm_f(x)
213
- if output_hidden_states:
214
- assert all_hidden_states is not None
215
- all_hidden_states = all_hidden_states + (x,)
216
- return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
217
-
218
- def param_init_fn(self, module: nn.Module) -> None:
219
- init_fn_name = self.config.init_config['name']
220
- MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
221
-
222
- def fsdp_wrap_fn(self, module: nn.Module) -> bool:
223
- return isinstance(module, MPTBlock)
224
-
225
- def activation_checkpointing_fn(self, module: nn.Module) -> bool:
226
- return isinstance(module, MPTBlock)
227
-
228
- class MPTForCausalLM(MPTPreTrainedModel):
229
-
230
- def __init__(self, config: MPTConfig):
231
- super().__init__(config)
232
- if not config.tie_word_embeddings:
233
- raise ValueError('MPTForCausalLM only supports tied word embeddings')
234
- log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
235
- self.transformer: MPTModel = MPTModel(config)
236
- for child in self.transformer.children():
237
- if isinstance(child, torch.nn.ModuleList):
238
- continue
239
- if isinstance(child, torch.nn.Module):
240
- child._fsdp_wrap = True
241
- self.logit_scale = None
242
- if config.logit_scale is not None:
243
- logit_scale = config.logit_scale
244
- if isinstance(logit_scale, str):
245
- if logit_scale == 'inv_sqrt_d_model':
246
- logit_scale = 1 / math.sqrt(config.d_model)
247
- else:
248
- raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
249
- self.logit_scale = logit_scale
250
-
251
- def get_input_embeddings(self) -> nn.Embedding:
252
- return self.transformer.wte
253
-
254
- def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
255
- self.transformer.wte = value
256
-
257
- def get_output_embeddings(self) -> nn.Embedding:
258
- return self.transformer.wte
259
-
260
- def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
261
- self.transformer.wte = new_embeddings
262
-
263
- def set_decoder(self, decoder: MPTModel) -> None:
264
- self.transformer = decoder
265
-
266
- def get_decoder(self) -> MPTModel:
267
- return self.transformer
268
-
269
- def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
270
- return_dict = return_dict if return_dict is not None else self.config.return_dict
271
- use_cache = use_cache if use_cache is not None else self.config.use_cache
272
- if inputs_embeds is not None:
273
- raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
274
- outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
275
- logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
276
- if self.logit_scale is not None:
277
- if self.logit_scale == 0:
278
- warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
279
- logits *= self.logit_scale
280
- loss = None
281
- if labels is not None:
282
- _labels = torch.roll(labels, shifts=-1)
283
- _labels[:, -1] = -100
284
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
285
- return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
286
-
287
- def param_init_fn(self, module: nn.Module) -> None:
288
- init_fn_name = self.config.init_config['name']
289
- MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
290
-
291
- def fsdp_wrap_fn(self, module: nn.Module) -> bool:
292
- return isinstance(module, MPTBlock)
293
-
294
- def activation_checkpointing_fn(self, module: nn.Module) -> bool:
295
- return isinstance(module, MPTBlock)
296
-
297
- def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
298
- if inputs_embeds is not None:
299
- raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
300
- attention_mask = kwargs['attention_mask'].bool()
301
- if attention_mask[:, -1].sum() != attention_mask.shape[0]:
302
- raise NotImplementedError('MPT does not support generation with right padding.')
303
- if self.transformer.attn_uses_sequence_id and self.training:
304
- sequence_id = torch.zeros_like(input_ids[:1])
305
- else:
306
- sequence_id = None
307
- if past_key_values is not None:
308
- input_ids = input_ids[:, -1].unsqueeze(-1)
309
- if self.transformer.prefix_lm:
310
- prefix_mask = torch.ones_like(attention_mask)
311
- if kwargs.get('use_cache') == False:
312
- raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
313
- else:
314
- prefix_mask = None
315
- return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
316
-
317
- @staticmethod
318
- def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
319
- """Used by HuggingFace generate when using beam search with kv-caching.
320
-
321
- See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
322
- for an example in transformers.
323
- """
324
- reordered_past = []
325
- for layer_past in past_key_values:
326
- reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
327
- return reordered_past
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/norm.py DELETED
@@ -1,57 +0,0 @@
1
- from typing import Dict, List, Optional, Type, Union
2
- import torch
3
-
4
- def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
5
- if torch.is_autocast_enabled():
6
- if tensor.device.type == 'cuda':
7
- dtype = torch.get_autocast_gpu_dtype()
8
- elif tensor.device.type == 'cpu':
9
- dtype = torch.get_autocast_cpu_dtype()
10
- else:
11
- raise NotImplementedError()
12
- return tensor.to(dtype=dtype)
13
- return tensor
14
-
15
- class LPLayerNorm(torch.nn.LayerNorm):
16
-
17
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
18
- super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
19
-
20
- def forward(self, x: torch.Tensor) -> torch.Tensor:
21
- module_device = x.device
22
- downcast_x = _cast_if_autocast_enabled(x)
23
- downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
24
- downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
25
- with torch.autocast(enabled=False, device_type=module_device.type):
26
- return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
27
-
28
- def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
29
- output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
30
- if weight is not None:
31
- return output * weight
32
- return output
33
-
34
- class RMSNorm(torch.nn.Module):
35
-
36
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
37
- super().__init__()
38
- self.eps = eps
39
- if weight:
40
- self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
41
- else:
42
- self.register_parameter('weight', None)
43
-
44
- def forward(self, x: torch.Tensor) -> torch.Tensor:
45
- return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
46
-
47
- class LPRMSNorm(RMSNorm):
48
-
49
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
50
- super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
51
-
52
- def forward(self, x: torch.Tensor) -> torch.Tensor:
53
- downcast_x = _cast_if_autocast_enabled(x)
54
- downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
55
- with torch.autocast(enabled=False, device_type=x.device.type):
56
- return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
57
- NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/param_init_fns.py DELETED
@@ -1,179 +0,0 @@
1
- import math
2
- import warnings
3
- from collections.abc import Sequence
4
- from functools import partial
5
- from typing import Any, Callable, Optional, Tuple, Union
6
- import torch
7
- from torch import nn
8
- from .fc import FC_CLASS_REGISTRY
9
- from .norm import NORM_CLASS_REGISTRY
10
- try:
11
- import transformer_engine.pytorch as te
12
- except:
13
- te = None
14
-
15
- def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
16
- del kwargs
17
- if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
18
- module.reset_parameters()
19
-
20
- def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
21
- _fused = getattr(module, '_fused', None)
22
- if _fused is None:
23
- raise RuntimeError(f'Internal logic error')
24
- assert isinstance(module.weight, torch.Tensor)
25
- (dim, splits) = _fused
26
- splits = (0, *splits, module.weight.size(dim))
27
- for (s, e) in zip(splits[:-1], splits[1:]):
28
- slice_indices = [slice(None)] * module.weight.ndim
29
- slice_indices[dim] = slice(s, e)
30
- init_fn_(module.weight[slice_indices])
31
-
32
- def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
33
- del kwargs
34
- init_div_is_residual = init_div_is_residual
35
- if init_div_is_residual is False:
36
- div_is_residual = 1.0
37
- elif init_div_is_residual is True:
38
- div_is_residual = math.sqrt(2 * n_layers)
39
- elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
40
- div_is_residual = init_div_is_residual
41
- elif init_div_is_residual.isnumeric():
42
- div_is_residual = float(init_div_is_residual)
43
- else:
44
- div_is_residual = 1.0
45
- raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
46
- if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
47
- if hasattr(module, '_fused'):
48
- fused_init_helper_(module, init_fn_)
49
- else:
50
- init_fn_(module.weight)
51
- if module.bias is not None:
52
- assert isinstance(module.bias, torch.Tensor)
53
- torch.nn.init.zeros_(module.bias)
54
- if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
- with torch.no_grad():
56
- module.weight.div_(div_is_residual)
57
- elif isinstance(module, nn.Embedding):
58
- if emb_init_std is not None:
59
- std = emb_init_std
60
- if std == 0:
61
- warnings.warn(f'Embedding layer initialized to 0.')
62
- emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
63
- elif emb_init_uniform_lim is not None:
64
- lim = emb_init_uniform_lim
65
- if isinstance(lim, Sequence):
66
- if len(lim) > 2:
67
- raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
68
- if lim[0] == lim[1]:
69
- warnings.warn(f'Embedding layer initialized to {lim[0]}.')
70
- else:
71
- if lim == 0:
72
- warnings.warn(f'Embedding layer initialized to 0.')
73
- lim = [-lim, lim]
74
- (a, b) = lim
75
- emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
76
- else:
77
- emb_init_fn_ = init_fn_
78
- emb_init_fn_(module.weight)
79
- elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
80
- if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
81
- torch.nn.init.ones_(module.weight)
82
- if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
83
- torch.nn.init.zeros_(module.bias)
84
- elif isinstance(module, nn.MultiheadAttention):
85
- if module._qkv_same_embed_dim:
86
- assert module.in_proj_weight is not None
87
- assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
88
- assert d_model is not None
89
- _d = d_model
90
- splits = (0, _d, 2 * _d, 3 * _d)
91
- for (s, e) in zip(splits[:-1], splits[1:]):
92
- init_fn_(module.in_proj_weight[s:e])
93
- else:
94
- assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
95
- assert module.in_proj_weight is None
96
- init_fn_(module.q_proj_weight)
97
- init_fn_(module.k_proj_weight)
98
- init_fn_(module.v_proj_weight)
99
- if module.in_proj_bias is not None:
100
- torch.nn.init.zeros_(module.in_proj_bias)
101
- if module.bias_k is not None:
102
- torch.nn.init.zeros_(module.bias_k)
103
- if module.bias_v is not None:
104
- torch.nn.init.zeros_(module.bias_v)
105
- init_fn_(module.out_proj.weight)
106
- if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
107
- with torch.no_grad():
108
- module.out_proj.weight.div_(div_is_residual)
109
- if module.out_proj.bias is not None:
110
- torch.nn.init.zeros_(module.out_proj.bias)
111
- elif te is not None and isinstance(module, te.LayerNormMLP):
112
- if isinstance(module.layer_norm_weight, torch.Tensor):
113
- torch.nn.init.ones_(module.layer_norm_weight)
114
- if isinstance(module.layer_norm_bias, torch.Tensor):
115
- torch.nn.init.zeros_(module.layer_norm_bias)
116
- init_fn_(module.fc1_weight)
117
- if module.fc1_bias is not None:
118
- assert isinstance(module.fc1_bias, torch.Tensor)
119
- torch.nn.init.zeros_(module.fc1_bias)
120
- init_fn_(module.fc2_weight)
121
- if module.fc2_bias is not None:
122
- assert isinstance(module.fc2_bias, torch.Tensor)
123
- torch.nn.init.zeros_(module.fc2_bias)
124
- with torch.no_grad():
125
- module.fc2_weight.div_(div_is_residual)
126
- else:
127
- for _ in module.parameters(recurse=False):
128
- raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
129
-
130
- def _normal_init_(std: float, mean: float=0.0) -> Callable:
131
- return partial(torch.nn.init.normal_, mean=mean, std=std)
132
-
133
- def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
134
- del kwargs
135
- init_fn_ = _normal_init_(std=std)
136
- generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
137
-
138
- def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
139
- del kwargs
140
- if init_std is None:
141
- raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
142
- _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
143
-
144
- def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
145
- del kwargs
146
- std = math.sqrt(2 / (5 * d_model))
147
- _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
148
-
149
- def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
150
- """From section 2.3.1 of GPT-NeoX-20B:
151
-
152
- An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
153
- see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
154
- and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
155
- """
156
- del kwargs
157
- residual_div = n_layers / math.sqrt(10)
158
- small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
159
-
160
- def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
161
- del kwargs
162
- kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
163
- generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
164
-
165
- def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
166
- del kwargs
167
- kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
168
- generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
169
-
170
- def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
171
- del kwargs
172
- xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
173
- generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
174
-
175
- def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
176
- del kwargs
177
- xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
- generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
179
- MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base_model/requirements.txt DELETED
@@ -1,2 +0,0 @@
1
- einops==0.5.0
2
- triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir_sm90#subdirectory=python
 
 
 
base_model/special_tokens_map.json DELETED
@@ -1,5 +0,0 @@
1
- {
2
- "bos_token": "<|endoftext|>",
3
- "eos_token": "<|endoftext|>",
4
- "unk_token": "<|endoftext|>"
5
- }
 
 
 
 
 
 
base_model/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
base_model/tokenizer_config.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "add_prefix_space": false,
3
- "bos_token": "<|endoftext|>",
4
- "clean_up_tokenization_spaces": true,
5
- "eos_token": "<|endoftext|>",
6
- "model_max_length": 2048,
7
- "tokenizer_class": "GPTNeoXTokenizer",
8
- "unk_token": "<|endoftext|>"
9
- }