--- license: mit tags: - int8 - Intel® Neural Compressor - neural-compressor - PostTrainingStatic datasets: - mnli metrics: - accuracy --- # INT8 RoBERT large finetuned on MNLI ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [roberta-large-mnli](https://huggingface.co/roberta-large-mnli). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. The linear modules **roberta.encoder.layer.16.output.dense**, **roberta.encoder.layer.17.output.dense**, **roberta.encoder.layer.18.output.dense**, fall back to fp32 for less than 1% relative accuracy loss. ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-acc)** |89.8624|90.5960| | **Model size (MB)** |381M|1.4G| ### Load with Intel® Neural Compressor: ```python from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification model_id = "Intel/roberta-base-squad2-int8-static" int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(model_id) ```