Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ language:
|
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
-
This model is an int4 model with group_size 128 of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) generated by [intel/auto-round](https://github.com/intel/auto-round).
|
13 |
Inference of this model is compatible with AutoGPTQ's Kernel.
|
14 |
|
15 |
|
@@ -18,16 +18,14 @@ Inference of this model is compatible with AutoGPTQ's Kernel.
|
|
18 |
|
19 |
|
20 |
|
21 |
-
###
|
22 |
|
23 |
Here is the sample command to reproduce the model
|
24 |
|
25 |
```bash
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
python3 main.py \
|
30 |
-
--model_name microsoft/Phi-3-mini-128k-instruct \
|
31 |
--device 0 \
|
32 |
--group_size 128 \
|
33 |
--bits 4 \
|
@@ -35,9 +33,9 @@ python3 main.py \
|
|
35 |
--nsamples 512 \
|
36 |
--seqlen 4096 \
|
37 |
--minmax_lr 0.01 \
|
38 |
-
--
|
39 |
--gradient_accumulate_steps 2 \
|
40 |
-
--
|
41 |
--output_dir "./tmp_autoround" \
|
42 |
|
43 |
```
|
@@ -46,15 +44,59 @@ python3 main.py \
|
|
46 |
|
47 |
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
```bash
|
54 |
-
|
|
|
|
|
55 |
```
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
| -------------- | ------ | ------ |
|
59 |
| Avg. | 0.6364 | 0.6300 |
|
60 |
| mmlu | 0.6215 | 0.6237 |
|
@@ -68,11 +110,6 @@ lm_eval --model hf --model_args pretrained="Intel/Phi-3-mini-128k-instruct-int4-
|
|
68 |
| arc_easy | 0.8119 | 0.8199 |
|
69 |
| arc_challenge | 0.5418 | 0.5350 |
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
## Caveats and Recommendations
|
77 |
|
78 |
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
@@ -80,7 +117,6 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
80 |
Here are a couple of useful links to learn more about Intel's AI software:
|
81 |
|
82 |
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
|
83 |
-
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
|
84 |
|
85 |
|
86 |
|
|
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
+
This model is an int4 model recipe with group_size 128 of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) generated by [intel/auto-round](https://github.com/intel/auto-round).
|
13 |
Inference of this model is compatible with AutoGPTQ's Kernel.
|
14 |
|
15 |
|
|
|
18 |
|
19 |
|
20 |
|
21 |
+
### Quantize the model
|
22 |
|
23 |
Here is the sample command to reproduce the model
|
24 |
|
25 |
```bash
|
26 |
+
pip install auto-round
|
27 |
+
auto-round
|
28 |
+
--model microsoft/Phi-3-mini-128k-instruct \
|
|
|
|
|
29 |
--device 0 \
|
30 |
--group_size 128 \
|
31 |
--bits 4 \
|
|
|
33 |
--nsamples 512 \
|
34 |
--seqlen 4096 \
|
35 |
--minmax_lr 0.01 \
|
36 |
+
--format 'auto_gptq' \
|
37 |
--gradient_accumulate_steps 2 \
|
38 |
+
--batch_size 4 \
|
39 |
--output_dir "./tmp_autoround" \
|
40 |
|
41 |
```
|
|
|
44 |
|
45 |
|
46 |
|
47 |
+
## How to use
|
48 |
|
49 |
+
### INT4 Inference with IPEX on Intel CPU
|
50 |
+
Install the latest [Intel Extension for Pytorch](https://github.com/intel/intel-extension-for-pytorch) and [Intel Neural Compressor](https://github.com/intel/neural-compressor)
|
51 |
|
52 |
```bash
|
53 |
+
pip install torch --index-url https://download.pytorch.org/whl/cpu
|
54 |
+
pip install intel_extension_for_pytorch
|
55 |
+
pip install neural_compressor_pt
|
56 |
```
|
57 |
|
58 |
+
```python
|
59 |
+
from transformers import AutoTokenizer
|
60 |
+
from neural_compressor.transformers import AutoModelForCausalLM
|
61 |
+
|
62 |
+
## note: use quantized model directory name below
|
63 |
+
model_name_or_path="./tmp_autoround/<model directory name>"
|
64 |
+
q_model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
|
65 |
+
|
66 |
+
prompt = "Once upon a time, a little girl"
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
69 |
+
print(tokenizer.decode(q_model.generate(**tokenizer(prompt, return_tensors="pt").to(q_model.device),max_new_tokens=50)[0]))
|
70 |
+
##Once upon a time, a little girl named Lily was playing in her backyard. She loved to explore and discover new things. One day, she stumbled upon a beautiful garden filled with colorful flowers andugh the garden, she noticed a
|
71 |
+
```
|
72 |
+
|
73 |
+
### INT4 Inference on Intel Gaudi Accelerator
|
74 |
+
docker image with Gaudi Software Stack is recommended. More details can be found in [Gaudi Guide](https://docs.habana.ai/en/latest/).
|
75 |
+
|
76 |
+
```python
|
77 |
+
import habana_frameworks.torch.core as htcore
|
78 |
+
from neural_compressor.torch.quantization import load
|
79 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
80 |
+
|
81 |
+
## note: use quantized model directory name below
|
82 |
+
model_name_or_path="./tmp_autoround/<model directory name>"
|
83 |
+
|
84 |
+
model = load(
|
85 |
+
model_name_or_path=model_name_or_path,
|
86 |
+
format="huggingface",
|
87 |
+
device="hpu"
|
88 |
+
)
|
89 |
+
|
90 |
+
prompt = "Once upon a time, a little girl"
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
92 |
+
print(tokenizer.decode(model.generate(**tokenizer(prompt, return_tensors="pt").to("hpu"),max_new_tokens=50)[0]))
|
93 |
+
|
94 |
+
```
|
95 |
+
|
96 |
+
## Accuracy Result
|
97 |
+
|
98 |
+
|
99 |
+
| Metric <img width=200> | FP16 <img width=200> | INT4 <img width=200> |
|
100 |
| -------------- | ------ | ------ |
|
101 |
| Avg. | 0.6364 | 0.6300 |
|
102 |
| mmlu | 0.6215 | 0.6237 |
|
|
|
110 |
| arc_easy | 0.8119 | 0.8199 |
|
111 |
| arc_challenge | 0.5418 | 0.5350 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
113 |
## Caveats and Recommendations
|
114 |
|
115 |
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
|
|
117 |
Here are a couple of useful links to learn more about Intel's AI software:
|
118 |
|
119 |
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
|
|
|
120 |
|
121 |
|
122 |
|