|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ESM model configuration""" |
|
|
|
from dataclasses import asdict, dataclass |
|
from typing import Optional |
|
|
|
from transformers import PretrainedConfig, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class EsmConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the ESM |
|
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*): |
|
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`ESMModel`]. |
|
mask_token_id (`int`, *optional*): |
|
The index of the mask token in the vocabulary. This must be included in the config because of the |
|
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. |
|
pad_token_id (`int`, *optional*): |
|
The index of the padding token in the vocabulary. This must be included in the config because certain parts |
|
of the ESM code use this instead of the attention mask. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 1026): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. |
|
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
is_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
emb_layer_norm_before (`bool`, *optional*): |
|
Whether to apply layer normalization after embeddings but before the main stem of the network. |
|
token_dropout (`bool`, defaults to `False`): |
|
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import EsmModel, EsmConfig |
|
|
|
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() |
|
|
|
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration) |
|
|
|
>>> # Accessing the model configuration >>> configuration = model.config |
|
```""" |
|
model_type = "esm" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=None, |
|
mask_token_id=None, |
|
pad_token_id=None, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=1026, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
emb_layer_norm_before=None, |
|
token_dropout=False, |
|
is_folding_model=False, |
|
esmfold_config=None, |
|
vocab_list=None, |
|
add_bias_fnn=True, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.emb_layer_norm_before = emb_layer_norm_before |
|
self.token_dropout = token_dropout |
|
self.is_folding_model = is_folding_model |
|
|
|
self.add_bias_fnn = add_bias_fnn |
|
if is_folding_model: |
|
if esmfold_config is None: |
|
logger.info( |
|
"No esmfold_config supplied for folding model, using default values." |
|
) |
|
esmfold_config = EsmFoldConfig() |
|
elif isinstance(esmfold_config, dict): |
|
esmfold_config = EsmFoldConfig(**esmfold_config) |
|
self.esmfold_config = esmfold_config |
|
if vocab_list is None: |
|
logger.warning( |
|
"No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" |
|
) |
|
self.vocab_list = get_default_vocab_list() |
|
else: |
|
self.vocab_list = vocab_list |
|
else: |
|
self.esmfold_config = None |
|
self.vocab_list = None |
|
if self.esmfold_config is not None and getattr( |
|
self.esmfold_config, "use_esm_attn_map", False |
|
): |
|
raise ValueError( |
|
"The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" |
|
) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = super().to_dict() |
|
if isinstance(self.esmfold_config, EsmFoldConfig): |
|
output["esmfold_config"] = self.esmfold_config.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class EsmFoldConfig: |
|
esm_type: str = None |
|
fp16_esm: bool = True |
|
use_esm_attn_map: bool = False |
|
esm_ablate_pairwise: bool = False |
|
esm_ablate_sequence: bool = False |
|
esm_input_dropout: float = 0 |
|
|
|
embed_aa: bool = True |
|
bypass_lm: bool = False |
|
|
|
lddt_head_hid_dim: int = 128 |
|
trunk: "TrunkConfig" = None |
|
|
|
def __post_init__(self): |
|
if self.trunk is None: |
|
self.trunk = TrunkConfig() |
|
elif isinstance(self.trunk, dict): |
|
self.trunk = TrunkConfig(**self.trunk) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = asdict(self) |
|
output["trunk"] = self.trunk.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class TrunkConfig: |
|
num_blocks: int = 48 |
|
sequence_state_dim: int = 1024 |
|
pairwise_state_dim: int = 128 |
|
sequence_head_width: int = 32 |
|
pairwise_head_width: int = 32 |
|
position_bins: int = 32 |
|
dropout: float = 0 |
|
layer_drop: float = 0 |
|
cpu_grad_checkpoint: bool = False |
|
max_recycles: int = 4 |
|
chunk_size: Optional[int] = 128 |
|
structure_module: "StructureModuleConfig" = None |
|
|
|
def __post_init__(self): |
|
if self.structure_module is None: |
|
self.structure_module = StructureModuleConfig() |
|
elif isinstance(self.structure_module, dict): |
|
self.structure_module = StructureModuleConfig(**self.structure_module) |
|
|
|
if self.max_recycles <= 0: |
|
raise ValueError( |
|
f"`max_recycles` should be positive, got {self.max_recycles}." |
|
) |
|
if self.sequence_state_dim % self.sequence_state_dim != 0: |
|
raise ValueError( |
|
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" |
|
f" {self.sequence_state_dim} and {self.sequence_state_dim}." |
|
) |
|
if self.pairwise_state_dim % self.pairwise_state_dim != 0: |
|
raise ValueError( |
|
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" |
|
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." |
|
) |
|
|
|
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width |
|
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width |
|
|
|
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: |
|
raise ValueError( |
|
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" |
|
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." |
|
) |
|
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: |
|
raise ValueError( |
|
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" |
|
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." |
|
) |
|
if self.pairwise_state_dim % 2 != 0: |
|
raise ValueError( |
|
f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." |
|
) |
|
|
|
if self.dropout >= 0.4: |
|
raise ValueError( |
|
f"`dropout` should not be greater than 0.4, got {self.dropout}." |
|
) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = asdict(self) |
|
output["structure_module"] = self.structure_module.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class StructureModuleConfig: |
|
""" |
|
Args: |
|
sequence_dim: |
|
Single representation channel dimension |
|
pairwise_dim: |
|
Pair representation channel dimension |
|
ipa_dim: |
|
IPA hidden channel dimension |
|
resnet_dim: |
|
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension |
|
num_heads_ipa: |
|
Number of IPA heads |
|
num_qk_points: |
|
Number of query/key points to generate during IPA |
|
num_v_points: |
|
Number of value points to generate during IPA |
|
dropout_rate: |
|
Dropout rate used throughout the layer |
|
num_blocks: |
|
Number of structure module blocks |
|
num_transition_layers: |
|
Number of layers in the single representation transition (Alg. 23 lines 8-9) |
|
num_resnet_blocks: |
|
Number of blocks in the angle resnet |
|
num_angles: |
|
Number of angles to generate in the angle resnet |
|
trans_scale_factor: |
|
Scale of single representation transition hidden dimension |
|
epsilon: |
|
Small number used in angle resnet normalization |
|
inf: |
|
Large number used for attention masking |
|
""" |
|
|
|
sequence_dim: int = 384 |
|
pairwise_dim: int = 128 |
|
ipa_dim: int = 16 |
|
resnet_dim: int = 128 |
|
num_heads_ipa: int = 12 |
|
num_qk_points: int = 4 |
|
num_v_points: int = 8 |
|
dropout_rate: float = 0.1 |
|
num_blocks: int = 8 |
|
num_transition_layers: int = 1 |
|
num_resnet_blocks: int = 2 |
|
num_angles: int = 7 |
|
trans_scale_factor: int = 10 |
|
epsilon: float = 1e-8 |
|
inf: float = 1e5 |
|
|
|
def to_dict(self): |
|
return asdict(self) |
|
|
|
|
|
def get_default_vocab_list(): |
|
return ( |
|
"<cls>", |
|
"<pad>", |
|
"<eos>", |
|
"<unk>", |
|
"L", |
|
"A", |
|
"G", |
|
"V", |
|
"S", |
|
"E", |
|
"R", |
|
"T", |
|
"I", |
|
"D", |
|
"P", |
|
"K", |
|
"Q", |
|
"N", |
|
"F", |
|
"Y", |
|
"M", |
|
"H", |
|
"W", |
|
"C", |
|
"X", |
|
"B", |
|
"U", |
|
"Z", |
|
"O", |
|
".", |
|
"-", |
|
"<null_1>", |
|
"<mask>", |
|
) |
|
|