|
""" |
|
Based on: https://github.com/lucidrains/flamingo-pytorch |
|
""" |
|
|
|
import torch |
|
from einops import rearrange, repeat |
|
from torch import einsum, nn |
|
|
|
from einops_exts import rearrange_many |
|
|
|
try: |
|
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint |
|
except: |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def FeedForward( |
|
dim, |
|
mult=4, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
): |
|
inner_dim = int(dim * mult) |
|
net = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, inner_dim, bias=False), |
|
nn.GELU(), |
|
nn.Linear(inner_dim, dim, bias=False), |
|
) |
|
|
|
if enable_init_network_params: |
|
|
|
net[0].weight.data.normal_(mean=0.0, std=initializer_range) |
|
net[0].bias.data.zero_() |
|
net[1].weight.data.normal_(mean=0.0, std=initializer_range) |
|
net[3].weight.data.normal_(mean=0.0, std=initializer_range) |
|
return net |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_head=64, |
|
heads=8, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
): |
|
super().__init__() |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
self.initializer_range = initializer_range |
|
|
|
inner_dim = dim_head * heads |
|
|
|
self.norm_media = nn.LayerNorm(dim) |
|
self.norm_latents = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
if enable_init_network_params: |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, T, n1, D) |
|
latent (torch.Tensor): latent features |
|
shape (b, T, n2, D) |
|
""" |
|
x = self.norm_media(x) |
|
latents = self.norm_latents(latents.contiguous()) |
|
|
|
h = self.heads |
|
|
|
q = self.to_q(latents) |
|
kv_input = torch.cat((x, latents), dim=-2) |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
|
|
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) |
|
q = q * self.scale |
|
|
|
sim = einsum("... i d, ... j d -> ... i j", q, k) |
|
sim = sim - sim.amax(dim=-1, keepdim=True).detach() |
|
attn = sim.softmax(dim=-1) |
|
|
|
out = einsum("... i j, ... j d -> ... i d", attn, v) |
|
out = rearrange(out, "b h t n d -> b t n (h d)", h=h) |
|
return self.to_out(out) |
|
|
|
|
|
class PerceiverResampler(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
depth=6, |
|
dim_head=64, |
|
heads=8, |
|
num_latents=64, |
|
max_num_media=None, |
|
max_num_frames=None, |
|
ff_mult=4, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
gradient_checkpointing=False, |
|
): |
|
super().__init__() |
|
|
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.initializer_range = initializer_range |
|
|
|
self.latents = nn.Parameter(torch.randn(num_latents, dim)) |
|
self.frame_embs = ( |
|
nn.Parameter(torch.randn(max_num_frames, dim)) |
|
if exists(max_num_frames) |
|
else None |
|
) |
|
self.media_time_embs = ( |
|
nn.Parameter(torch.randn(max_num_media, 1, dim)) |
|
if exists(max_num_media) |
|
else None |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
|
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention( |
|
dim=dim, |
|
dim_head=dim_head, |
|
heads=heads, |
|
enable_init_network_params=enable_init_network_params, |
|
initializer_range=initializer_range, |
|
), |
|
FeedForward( |
|
dim=dim, |
|
mult=ff_mult, |
|
enable_init_network_params=enable_init_network_params, |
|
initializer_range=initializer_range, |
|
), |
|
] |
|
) |
|
) |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
if enable_init_network_params: |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
elif isinstance(module, nn.Parameter): |
|
module.data.normal_(mean=0.0, std=self.initializer_range) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, T, F, v, D) |
|
Returns: |
|
shape (b, T, n, D) where n is self.num_latents |
|
""" |
|
|
|
b, T, F, v = x.shape[:4] |
|
|
|
|
|
if exists(self.frame_embs): |
|
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v) |
|
x = x + frame_embs |
|
x = rearrange( |
|
x, "b T F v d -> b T (F v) d" |
|
) |
|
if exists(self.media_time_embs): |
|
x = x + self.media_time_embs[:T] |
|
|
|
|
|
latents = repeat(self.latents, "n d -> b T n d", b=b, T=T) |
|
for attn, ff in self.layers: |
|
if self.gradient_checkpointing and latents.requires_grad: |
|
latents = checkpoint(attn, x, (latents)) + latents |
|
latents = checkpoint(ff, latents) + latents |
|
else: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
return self.norm(latents) |
|
|
|
|
|
|
|
class MaskedCrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_visual, |
|
dim_head=64, |
|
heads=8, |
|
only_attend_immediate_media=True, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
): |
|
super().__init__() |
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
self.initializer_range = initializer_range |
|
inner_dim = dim_head * heads |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
|
|
self.only_attend_immediate_media = only_attend_immediate_media |
|
|
|
if enable_init_network_params: |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def forward(self, x, media, media_locations=None, use_cached_media=False): |
|
""" |
|
Args: |
|
x (torch.Tensor): text features |
|
shape (B, T_txt, D_txt) |
|
media (torch.Tensor): image features |
|
shape (B, T_img, n, D_img) where n is the dim of the latents |
|
media_locations: boolean mask identifying the media tokens in x |
|
shape (B, T_txt) |
|
use_cached_media: bool |
|
If true, treat all of x as if they occur after the last media |
|
registered in media_locations. T_txt does not need to exactly |
|
equal media_locations.shape[1] in this case |
|
""" |
|
|
|
if not use_cached_media: |
|
assert media_locations.shape[1] == x.shape[1], ( |
|
f"media_location.shape is {media_locations.shape} but x.shape is" |
|
f" {x.shape}" |
|
) |
|
|
|
T_txt = x.shape[1] |
|
_, T_img, n = media.shape[:3] |
|
h = self.heads |
|
|
|
x = self.norm(x.contiguous()) |
|
q = self.to_q(x) |
|
media = rearrange(media, "b t n d -> b (t n) d") |
|
|
|
k, v = self.to_kv(media).chunk(2, dim=-1) |
|
|
|
if exists(media_locations): |
|
media_time = torch.arange(T_img, device=x.device) + 1 |
|
|
|
if use_cached_media: |
|
|
|
text_time = repeat( |
|
torch.count_nonzero(media_locations, dim=1), |
|
"b -> b i", |
|
i=T_txt, |
|
) |
|
else: |
|
|
|
text_time = media_locations.cumsum(dim=-1) |
|
|
|
|
|
|
|
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge |
|
text_to_media_mask = mask_op( |
|
rearrange(text_time, "b i -> b 1 i 1"), |
|
repeat(media_time, "j -> 1 1 1 (j n)", n=n), |
|
) |
|
|
|
if self.only_attend_immediate_media: |
|
|
|
text_without_media_mask = text_time == 0 |
|
text_without_media_mask = rearrange( |
|
text_without_media_mask, "b i -> b 1 i 1" |
|
) |
|
|
|
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h) |
|
q = q * self.scale |
|
sim = einsum("... i d, ... j d -> ... i j", q, k) |
|
|
|
if exists(media_locations): |
|
sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max) |
|
|
|
sim = sim - sim.amax(dim=-1, keepdim=True).detach() |
|
attn = sim.softmax(dim=-1) |
|
|
|
if exists(media_locations) and self.only_attend_immediate_media: |
|
|
|
attn = attn.masked_fill(text_without_media_mask, 0.0) |
|
|
|
out = einsum("... i j, ... j d -> ... i d", attn, v) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class GatedCrossAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_visual, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=4, |
|
only_attend_immediate_media=True, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
gradient_checkpointing=False, |
|
): |
|
super().__init__() |
|
self.attn = MaskedCrossAttention( |
|
dim=dim, |
|
dim_visual=dim_visual, |
|
dim_head=dim_head, |
|
heads=heads, |
|
only_attend_immediate_media=only_attend_immediate_media, |
|
enable_init_network_params=enable_init_network_params, |
|
initializer_range=initializer_range, |
|
) |
|
self.attn_gate = nn.Parameter(torch.tensor([0.0])) |
|
self.ff = FeedForward(dim, mult=ff_mult) |
|
self.ff_gate = nn.Parameter(torch.tensor([0.0])) |
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
def forward( |
|
self, |
|
x, |
|
media, |
|
media_locations=None, |
|
use_cached_media=False, |
|
): |
|
if exists(media_locations): |
|
flag = torch.sum(media_locations, dim=-1) |
|
flag = torch.where(flag > 0.0, 1.0, 0.0) |
|
flag = flag.unsqueeze(1).unsqueeze(1).to(torch.bfloat16) |
|
else: |
|
flag = 1.0 |
|
|
|
if self.gradient_checkpointing and media.requires_grad: |
|
x = ( |
|
flag |
|
* checkpoint(self.attn, x, media, media_locations, use_cached_media) |
|
* self.attn_gate.tanh() |
|
+ x |
|
) |
|
x = flag * checkpoint(self.ff, x) * self.ff_gate.tanh() + x |
|
|
|
else: |
|
x = ( |
|
flag |
|
* self.attn( |
|
x, |
|
media, |
|
media_locations=media_locations, |
|
use_cached_media=use_cached_media, |
|
) |
|
* self.attn_gate.tanh() |
|
+ x |
|
) |
|
x = flag * self.ff(x) * self.ff_gate.tanh() + x |
|
|
|
return x |
|
|