File size: 61,647 Bytes
a3f9aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
# modeling_fynmodel : Imed MAGROUNE / 2024 - 09
# original code from modeling_FeynModel
# add DaVit Vision Tower
#
# update generate forward function
#
# add lora adapters
#
# train on coco OD and vision reasoning
# train on ScenceQA
#
# todo add mamaba layer
#
# todo train on Arc-AGI


from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
    replace_return_docstrings,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
)
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import (
    _prepare_4d_attention_mask,
    _prepare_4d_attention_mask_for_sdpa,
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)

from transformers.cache_utils import Cache, HybridCache
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)

from typing import List, Optional, Tuple, Union

from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2ForCausalLM,Gemma2DecoderLayer,Gemma2RMSNorm
from .configuration_feynmodel import FeynModelConfig,Florence2VisionConfig

from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM
import json
import math
import torch
from torch import nn
import torch.nn.functional as F
import logging

from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
    replace_return_docstrings,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
)

from transformers.modeling_utils import PreTrainedModel

from collections import OrderedDict
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_

logger = logging.get_logger(__name__)

class MySequential(nn.Sequential):
    def forward(self, *inputs):
        for module in self._modules.values():
            if type(inputs) == tuple:
                inputs = module(*inputs)
            else:
                inputs = module(inputs)
        return inputs


class PreNorm(nn.Module):
    def __init__(self, norm, fn, drop_path=None):
        super().__init__()
        self.norm = norm
        self.fn = fn
        self.drop_path = drop_path

    def forward(self, x, *args, **kwargs):
        shortcut = x
        if self.norm != None:
            x, size = self.fn(self.norm(x), *args, **kwargs)
        else:
            x, size = self.fn(x, *args, **kwargs)

        if self.drop_path:
            x = self.drop_path(x)

        x = shortcut + x

        return x, size


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.net = nn.Sequential(OrderedDict([
            ("fc1", nn.Linear(in_features, hidden_features)),
            ("act", act_layer()),
            ("fc2", nn.Linear(hidden_features, out_features))
        ]))

    def forward(self, x, size):
        return self.net(x), size


class DepthWiseConv2d(nn.Module):
    def __init__(
        self,
        dim_in,
        kernel_size,
        padding,
        stride,
        bias=True,
    ):
        super().__init__()
        self.dw = nn.Conv2d(
            dim_in, dim_in,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim_in,
            stride=stride,
            bias=bias
        )

    def forward(self, x, size):
        B, N, C = x.shape
        H, W = size
        assert N == H * W

        x = self.dw(x.transpose(1, 2).view(B, C, H, W))
        size = (x.size(-2), x.size(-1))
        x = x.flatten(2).transpose(1, 2)
        return x, size


class ConvEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(
        self,
        patch_size=7,
        in_chans=3,
        embed_dim=64,
        stride=4,
        padding=2,
        norm_layer=None,
        pre_norm=True
    ):
        super().__init__()
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_chans, embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=padding
        )

        dim_norm = in_chans if pre_norm else embed_dim
        self.norm = norm_layer(dim_norm) if norm_layer else None

        self.pre_norm = pre_norm

    def forward(self, x, size):
        H, W = size
        if len(x.size()) == 3:
            if self.norm and self.pre_norm:
                x = self.norm(x)
            x = rearrange(
                x, 'b (h w) c -> b c h w',
                h=H, w=W
            )

        x = self.proj(x)

        _, _, H, W = x.shape
        x = rearrange(x, 'b c h w -> b (h w) c')
        if self.norm and not self.pre_norm:
            x = self.norm(x)

        return x, (H, W)


class ChannelAttention(nn.Module):

    def __init__(self, dim, groups=8, qkv_bias=True):
        super().__init__()

        self.groups = groups
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x, size):
        B, N, C = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * (float(N) ** -0.5)
        attention = q.transpose(-1, -2) @ k
        attention = attention.softmax(dim=-1)
        x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        return x, size


class ChannelBlock(nn.Module):

    def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
                 drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.channel_attn = PreNorm(
            norm_layer(dim),
            ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.channel_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)

        return x, size


def window_partition(x, window_size: int):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
    B = batch_size 
    # this will cause onnx conversion failed for dynamic axis, because treated as constant
    # int(windows.shape[0] / (H * W / window_size / window_size)) 
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    def __init__(self, dim, num_heads, window_size, qkv_bias=True):

        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = float(head_dim) ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, size):

        H, W = size
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        x = window_partition(x, self.window_size)
        x = x.view(-1, self.window_size * self.window_size, C)

        # W-MSA/SW-MSA
        # attn_windows = self.attn(x_windows)

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
        attn = self.softmax(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)

        # merge windows
        x = x.view(
            -1, self.window_size, self.window_size, C
        )
        x = window_reverse(x, B, self.window_size, Hp, Wp)

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        return x, size


class SpatialBlock(nn.Module):

    def __init__(self, dim, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.window_attn = PreNorm(
            norm_layer(dim),
            WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.window_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)
        return x, size


class DaViT(nn.Module):
    """ DaViT: Dual-Attention Transformer

    Args:
        in_chans (int): Number of input image channels. Default: 3.
        num_classes (int): Number of classes for classification head. Default: 1000.
        patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
        patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
        patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
        patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
        embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
        num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
        num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
        drop_path_rate (float): Stochastic depth rate. Default: 0.1.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        enable_checkpoint (bool): If True, enable checkpointing. Default: False.
        conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
        conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
    """

    def __init__(
        self,
        in_chans=3,
        num_classes=1000,
        depths=(1, 1, 3, 1),
        patch_size=(7, 2, 2, 2),
        patch_stride=(4, 2, 2, 2),
        patch_padding=(3, 0, 0, 0),
        patch_prenorm=(False, False, False, False),
        embed_dims=(64, 128, 192, 256),
        num_heads=(3, 6, 12, 24),
        num_groups=(3, 6, 12, 24),
        window_size=7,
        mlp_ratio=4.,
        qkv_bias=True,
        drop_path_rate=0.1,
        norm_layer=nn.LayerNorm,
        enable_checkpoint=False,
        conv_at_attn=True,
        conv_at_ffn=True,
     ):
        super().__init__()

        self.num_classes = num_classes
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.num_groups = num_groups
        self.num_stages = len(self.embed_dims)
        self.enable_checkpoint = enable_checkpoint
        assert self.num_stages == len(self.num_heads) == len(self.num_groups)

        num_stages = len(embed_dims)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]

        depth_offset = 0
        convs = []
        blocks = []
        for i in range(num_stages):
            conv_embed = ConvEmbed(
                patch_size=patch_size[i],
                stride=patch_stride[i],
                padding=patch_padding[i],
                in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
                embed_dim=self.embed_dims[i],
                norm_layer=norm_layer,
                pre_norm=patch_prenorm[i]
            )
            convs.append(conv_embed)

            block = MySequential(
                *[
                    MySequential(OrderedDict([
                        (
                            'spatial_block', SpatialBlock(
                                embed_dims[i],
                                num_heads[i],
                                window_size,
                                drop_path_rate=dpr[depth_offset+j*2],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        ),
                        (
                            'channel_block', ChannelBlock(
                                embed_dims[i],
                                num_groups[i],
                                drop_path_rate=dpr[depth_offset+j*2+1],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        )
                    ])) for j in range(depths[i])
                ]
            )
            blocks.append(block)
            depth_offset += depths[i]*2

        self.convs = nn.ModuleList(convs)
        self.blocks = nn.ModuleList(blocks)

        self.norms = norm_layer(self.embed_dims[-1])
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    @property
    def dim_out(self):
        return self.embed_dims[-1]

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Conv2d):
            nn.init.normal_(m.weight, std=0.02)
            for name, _ in m.named_parameters():
                if name in ['bias']:
                    nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)

    def forward_features_unpool(self, x):
        """
        forward until avg pooling 
        Args:
            x (_type_): input image tensor
        """
        input_size = (x.size(2), x.size(3))
        for conv, block in zip(self.convs, self.blocks):
            x, input_size = conv(x, input_size)
            if self.enable_checkpoint:
                x, input_size = checkpoint.checkpoint(block, x, input_size)
            else:
                x, input_size = block(x, input_size)
        return x

    def forward_features(self, x):
        x = self.forward_features_unpool(x)

        # (batch_size, num_tokens, token_dim)
        x = self.avgpool(x.transpose(1, 2))
        # (batch_size, 1, num_tokens)
        x = torch.flatten(x, 1)
        x = self.norms(x)

        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x
    
    @classmethod
    def from_config(cls, config):
        return cls(
            depths=config.depths,
            embed_dims=config.dim_embed,
            num_heads=config.num_heads,
            num_groups=config.num_groups,
            patch_size=config.patch_size,
            patch_stride=config.patch_stride,
            patch_padding=config.patch_padding,
            patch_prenorm=config.patch_prenorm,
            drop_path_rate=config.drop_path_rate,
            window_size=config.window_size,
        )




_CONFIG_FOR_DOC = "FeynModelConfig"

FEYNMODEL_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`FeynModelConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FEYNMODEL_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""

# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
    attention_mask: torch.Tensor,
    sequence_length: int,
    target_length: int,
    dtype: torch.dtype,
    device: torch.device,
    min_dtype: float,
    cache_position: torch.Tensor,
    batch_size: int,
):
    
    #print(f" +++++++++ prepare 4K  +++++++++++++++ rec {attention_mask.size()} sequence_length {sequence_length}")
    if attention_mask is not None and attention_mask.dim() == 4:
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
        #print("+++++++++++++++++ return it")
        #causal_mask = attention_mask
        # In this case we assume that the mask comes already in inverted form.
        causal_mask = attention_mask[:, :, -sequence_length:, :]
        #print(f"+++++++++++++++++ truncated causal_mask to last {sequence_length} elements, size: {causal_mask.size()}")
        #print(f"+++++++++++++++++ return it  causal_mask {causal_mask.size()}   !!!!!!!!! attention_mask {attention_mask.size()}")
    else:
        #print("+++++++++++++++++++++ else +++++++++++++++++")
        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        #print(f"++++++++++++++++ causal_mask {causal_mask.size()} ++++++++++++++++++ sequence_length = {sequence_length} ")
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
            #print(f"++++++++++++++++++ causal_mask = torch.triu ++++++++++ {causal_mask.size()} ")
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
        #print(f"+++++++++++++++++++++ avant if attention_mask is not None:, causal_mask={causal_mask.size()}")
        if attention_mask is not None:
            #print(" +++++++++++++ attention_mask  is None++++++++++++")
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )
    #print(f"+++++++++++++++++++ 4K  returning causal_mask {causal_mask.size()} +++++++++++++++++++")

    return causal_mask

class LearnedAbsolutePositionEmbedding2D(nn.Module):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, embedding_dim=256, num_pos=50):
        super().__init__()
        self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
        self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))

    def forward(self, pixel_values):
        """
        pixel_values: (batch_size, height, width, num_channels) 
        returns: (batch_size, height, width, embedding_dim * 2)
        """
        if len(pixel_values.shape) != 4:
            raise ValueError('pixel_values must be a 4D tensor')
        height, width = pixel_values.shape[1:3]
        width_values = torch.arange(width, device=pixel_values.device)
        height_values = torch.arange(height, device=pixel_values.device)
        x_emb = self.column_embeddings(width_values)
        y_emb = self.row_embeddings(height_values)
        # (height, width, embedding_dim * 2)
        pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
        # (embedding_dim * 2, height, width)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)
        # (batch_size, embedding_dim * 2, height, width)
        pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
        # (batch_size, height, width, embedding_dim * 2)
        pos = pos.permute(0, 2, 3, 1)
        return pos

class PositionalEmbeddingCosine1D(nn.Module):
    """
    This class implements a very simple positional encoding. It follows closely
    the encoder from the link below:
    https://pytorch.org/tutorials/beginner/translation_transformer.html
    Args:
        embed_dim: The dimension of the embeddings.
        dropout_prob: The dropout probability.
        max_seq_len: The maximum length to precompute the positional encodings.
    """
    def __init__(
            self,
            embed_dim: int = 512,
            max_seq_len: int = 1024) -> None:
        super(PositionalEmbeddingCosine1D, self).__init__()
        self.embed_dim = embed_dim
        self.max_seq_len = max_seq_len
        # Generate the sinusoidal arrays.
        factor = math.log(10000)
        denominator = torch.exp(
            -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
        # Matrix where rows correspond to a positional embedding as a function
        # of the position index (i.e., the row index).
        frequencies = \
            torch.arange(0, self.max_seq_len) \
            .reshape(self.max_seq_len, 1) * denominator
        pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
        # Populate uneven entries.
        pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
        pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
        # Save the positional embeddings in a constant buffer.
        self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)

    def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
        """
        Args:
            seq_embeds: The sequence embeddings in order. Allowed size:
                1. [T, D], where T is the length of the sequence, and D is the
                frame embedding dimension.
                2. [B, T, D], where B is the batch size and T and D are the
                same as above.
        Returns a tensor of with the same dimensions as the input: i.e.,
        [1, T, D] or [T, D].
        """
        shape_len = len(seq_embeds.shape)
        assert 2 <= shape_len <= 3
        len_seq = seq_embeds.size(-2)
        assert len_seq <= self.max_seq_len
        pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
        # Adapt pre-computed positional embeddings to the input.
        if shape_len == 3:
            pos_embeds = pos_embeds.view(
                (1, pos_embeds.size(0), pos_embeds.size(1)))
        return pos_embeds


class LearnedAbsolutePositionEmbedding1D(nn.Module):
    """
    Learnable absolute positional embeddings for 1D sequences.
    Args:
        embed_dim: The dimension of the embeddings.
        max_seq_len: The maximum length to precompute the positional encodings.
    """
    def __init__(
            self,
            embedding_dim: int = 512,
            num_pos: int = 1024) -> None:
        super(LearnedAbsolutePositionEmbedding1D, self).__init__()
        self.embeddings = nn.Embedding(num_pos, embedding_dim)
        self.num_pos = num_pos

    def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
        """
        Args:
            seq_embeds: The sequence embeddings in order. Allowed size:
                1. [T, D], where T is the length of the sequence, and D is the
                frame embedding dimension.
                2. [B, T, D], where B is the batch size and T and D are the
                same as above.
        Returns a tensor of with the same dimensions as the input: i.e.,
        [1, T, D] or [T, D].
        """
        shape_len = len(seq_embeds.shape)
        assert 2 <= shape_len <= 3
        len_seq = seq_embeds.size(-2)
        assert len_seq <= self.num_pos
        # [T, D]
        pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
        # Adapt pre-computed positional embeddings to the input.
        if shape_len == 3:
            pos_embeds = pos_embeds.view(
                (1, pos_embeds.size(0), pos_embeds.size(1)))
        return pos_embeds

def create_git_attention_mask(
    tgt: torch.Tensor,
    memory: torch.Tensor,
    max_length: int
) -> torch.Tensor:
    # Obtain the dimensions of the target text and memory
    batch_size = tgt.size(0)
    num_tgt = tgt.shape[1]
    num_memory = memory.shape[1]
    total_length = num_memory + num_tgt

    # Create the top left part of the attention matrix
    top_left = torch.zeros((num_memory, num_memory))  # Attention enabled in this region
    top_right = torch.full((num_memory, num_tgt), float(-3.4028e+38))  # Attention disabled here

    # Bottom left part of the attention matrix
    bottom_left = torch.zeros((num_tgt, num_memory))  # Attention enabled here

    # Create a lower triangular matrix for the bottom right part
    bottom_right = torch.tril(torch.ones(num_tgt, num_tgt))

    # Transform 1s to 0 to enable attention, and 0s to -inf to block attention
    bottom_right = bottom_right.masked_fill(bottom_right == 0, float(-3.4028e+38))
    bottom_right = bottom_right.masked_fill(bottom_right == 1, float(0))

    # Concatenate matrices to form the full mask
    left = torch.cat((top_left, bottom_left), dim=0)
    right = torch.cat((top_right, bottom_right), dim=0)

    # Combine left and right parts
    full_attention_mask = torch.cat((left, right), dim=1)

    # Add padding to reach max_length
    padding = torch.full((total_length, max_length - total_length), float(-3.4028e+38))
    full_attention_mask = torch.cat((full_attention_mask, padding), dim=1)

    # Add an axis for multi-heads and batch_size
    full_attention_mask = full_attention_mask[None, None, :, :]

    # Expand the mask to have shape (batch_size, 1, seq_length, max_length)
    full_attention_mask = full_attention_mask.expand(batch_size, 1, full_attention_mask.size(-2), full_attention_mask.size(-1))

    return full_attention_mask

def get_position_ids_from_binary_attention_mask(mask):
    """
    Extract position IDs from a binary attention mask.

    Args:
        mask (torch.Tensor): The attention mask tensor of shape (1, 1, seq_len, seq_len), 
                             where 1 indicates allowed attention and 0 indicates blocked attention.

    Returns:
        list: A list of lists where each sublist contains the allowed position IDs for each query position.
    """
    # Assuming the mask is of shape (1, 1, seq_len, seq_len)
    _, _, seq_len, _ = mask.shape
    
    # Create a tensor with position IDs from 0 to seq_len - 1
    position_ids = torch.arange(seq_len, dtype=torch.long, device=mask.device)
    
    # Add a batch dimension
    position_ids = position_ids.unsqueeze(0)
    
    return position_ids

def ensure_tensor(variable):
    # Check if the variable is a torch.Tensor
    if isinstance(variable, torch.Tensor):
        # print("Variable is already a tensor.")
        return variable
    else:
        #print("Variable is not a tensor, converting...")
        try:
            # Convert the variable to a tensor
            tensor = torch.tensor(variable)
            #print("Conversion successful.")
            return tensor
        except Exception as e:
            print(f"Error converting to tensor: {e}")
            raise

@add_start_docstrings(
    "The bare Model outputting raw hidden-states without any specific head on top.",
    FEYNMODEL_START_DOCSTRING,
)
class FeynModel(Gemma2Model):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. 
    Each layer is a [`FeynModelDecoderLayer`] + ['LoraLayer'] for *proj* moduls 
    NB : LoraLayers will be added and activatd on proj modules onpy if pixel_values is not None

    Args:
        config: FeynModelConfig
    """

    def __init__(self, config: FeynModelConfig):
        super().__init__(config)
        # Initialize weights and apply final processing
        self.mode='llm'
        '''
        self.image_patch_tokens = int(
            (config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1
        )
        
        if config.num_image_with_embedding is not None:
            self.image_patch_tokens *= config.num_image_with_embedding
        '''
        self.image_patch_tokens = 577
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    
        
    
    @add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
       
        # print(f" self.mode =  {self.mode}")
        # Ensure cache_position is initialized if not provided
       
            
        if cache_position is None:
            batch_size = input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
            cache_position = torch.zeros((batch_size,), dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device)


            
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
            causal_mask = self._update_causal_mask(
                attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
            )
        else:
            causal_mask = ensure_tensor(causal_attention_mask)
            position_ids = get_position_ids_from_binary_attention_mask(attention_mask)
             
        #print(f" causal_mask = {causal_mask} ")     

        if cache_position is None:
            cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)

        if position_ids is None :
            position_ids = cache_position.unsqueeze(0)

        
        
        # Convert position_ids to a tensor if not already
        if not isinstance(position_ids, torch.Tensor):
               
            position_ids = torch.tensor(position_ids, dtype=torch.long, device=inputs_embeds.device)
            
        
        # embed positions
        hidden_states = inputs_embeds

        # normalized
        # FeynModel downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
        # See https://github.com/huggingface/transformers/pull/29402
        normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
        hidden_states = hidden_states * normalizer

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        
        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
        
        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = past_key_values if use_cache else None
        
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
    


    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):

        # print(f" _start _____ _update_causal_mask attention_mask {attention_mask.size()} {attention_mask} ")
        # Flash Attention currently doesn't support static cache but FeynModel work only with static cache.
        # So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
        # to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
        # as it doesn't cause dynamic control issues.
        if self.config._attn_implementation == "flash_attention_2":
            return attention_mask

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if isinstance(past_key_values, HybridCache):
            target_length = past_key_values.get_max_length()
        else:
            target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            min_dtype=min_dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )
        #print(f" _end ______ _update_causal_mask causal_mask {causal_mask.size()} {causal_mask} ")
        return causal_mask



class FeynModelForCausalLM(Gemma2ForCausalLM):
    _tied_weights_keys = ["lm_head.weight"]
    config_class = FeynModelConfig
    def __init__(self, config):
        super().__init__(config)
        config.vision_config=Florence2VisionConfig.from_dict(config.vision_config)
        self.model = FeynModel(config)
        
        # assert config.vision_config.model_type== 'davit', 'only DaViT is supported for now'
        self.vision_tower = DaViT.from_config(config=config.vision_config)
        self._build_image_projection_layers(config)

        self.__causal_attention_mask = None
        
        # Initialize weights and apply final processing
        self.post_init()

    ################   Vision Tower ########################
    def _build_image_projection_layers(self, config):
        image_dim_out = config.vision_config.dim_embed[-1]
        dim_projection = config.vision_config.projection_dim
        self.image_projection = nn.Parameter(
            torch.empty(image_dim_out, dim_projection)
        )
        self.image_proj_norm = nn.LayerNorm(dim_projection)
        image_pos_embed_config = config.vision_config.image_pos_embed
        if image_pos_embed_config['type'] == 'learned_abs_2d':
            self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
                embedding_dim=image_dim_out,
                num_pos=image_pos_embed_config['max_pos_embeddings']
            )
        else:
            raise NotImplementedError('Not implemented yet')

        self.image_feature_source = config.vision_config.image_feature_source

        # temporal embedding
        visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
        if visual_temporal_embedding_config['type'] == 'COSINE':
            self.visual_temporal_embed = PositionalEmbeddingCosine1D(
                embed_dim=image_dim_out,
                max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
            )
        else:
             raise NotImplementedError('Not implemented yet')

 

    def _merge_input_ids_with_image_features(self, image_features, inputs_embeds):
        batch_size, image_token_length = image_features.size()[:-1]
        device = image_features.device
        image_attention_mask = torch.ones(batch_size, image_token_length, device=device)

        if inputs_embeds is None:
            return image_features, image_attention_mask

        task_prefix_embeds = inputs_embeds
        task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)

        # Assurer que les masques d'attention sont de deux dimensions
        if len(task_prefix_attention_mask.shape) == 3:
            task_prefix_attention_mask = task_prefix_attention_mask.squeeze(1)

        # Vérifier la dimension de batch et ajuster si nécessaire
        if image_features.size(0) != task_prefix_embeds.size(0):
            raise ValueError("Batch sizes of image_features and task_prefix_embeds do not match")

        # Ajouter une dimension fictive si les dimensions ne sont pas alignées
        if image_features.dim() < task_prefix_embeds.dim():
            image_features = image_features.unsqueeze(-1)
        elif task_prefix_embeds.dim() < image_features.dim():
            task_prefix_embeds = task_prefix_embeds.unsqueeze(-1)

        # Assurer que toutes les dimensions, sauf dim=1, sont identiques
        if image_features.size(2) != task_prefix_embeds.size(2):
            # Ajuster ou signaler une erreur si les dimensions internes ne sont pas compatibles
            raise ValueError("Internal dimensions of image_features and task_prefix_embeds do not match")

        inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
        attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)

        return inputs_embeds, attention_mask

    def _encode_image(self, pixel_values):
        if len(pixel_values.shape) == 4:
            batch_size, C, H, W = pixel_values.shape
            T = 1
            x = self.vision_tower.forward_features_unpool(pixel_values)
        else:
            # Ajoute une dimension de batch au début si 'pixel_values' n'a que 3 dimensions (C, H, W)
            pixel_values = pixel_values.unsqueeze(0)  # Ajoute une dimension de batch
            batch_size, C, H, W = pixel_values.shape
            T = 1
            x = self.vision_tower.forward_features_unpool(pixel_values)
        
        if self.image_pos_embed is not None:
            x = x.view(batch_size * T, -1, x.shape[-1])
            num_tokens = x.shape[-2]
            h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
            assert h * w == num_tokens, 'only support square feature maps for now'
            x = x.view(batch_size * T, h, w, x.shape[-1])
            pos_embed = self.image_pos_embed(x)
            x = x + pos_embed
            x = x.view(batch_size, T * h*w, x.shape[-1])

        if self.visual_temporal_embed is not None:
            visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
            x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])

        x_feat_dict = {}

        spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
        x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x

        temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
        x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x

        x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
        x_feat_dict['last_frame'] = x

        new_x = []
        for _image_feature_source in self.image_feature_source:
            if _image_feature_source not in x_feat_dict:
                raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
            new_x.append(x_feat_dict[_image_feature_source])

        x = torch.cat(new_x, dim=1)

        x = x @ self.image_projection
        x = self.image_proj_norm(x)

        return x 
    #######################################################

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values:  Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, GemmaForCausalLM

        >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
        >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")

        >>> prompt = "What is your favorite condiment?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "What is your favorite condiment?"
        ```"""

        
        if self.training and self.config._attn_implementation != "eager":
            logger.warning_once(
                "It is strongly recommended to train FeynModel models with the `eager` attention implementation "
                f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
            )
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is not None:
            self.model.mode='vlm'
            
            if input_ids is not None:
                inputs_embeds = self.get_input_embeddings()(input_ids)
            image_features = self._encode_image(pixel_values)
            inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
            causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=2048)
            causal_attention_mask=causal_attention_mask.to(input_ids.device)
            self.__causal_attention_mask=causal_attention_mask

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        if pixel_values is not None:
            outputs = self.model(
                input_ids=None,
                attention_mask=causal_attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                cache_position=cache_position,
                causal_attention_mask=causal_attention_mask,
            )
        else:
            outputs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                cache_position=cache_position,
                causal_attention_mask=self.__causal_attention_mask,
            )
            
        
        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        
        if self.config.final_logit_softcapping is not None:
            logits = logits / self.config.final_logit_softcapping
            logits = torch.tanh(logits)
            logits = logits * self.config.final_logit_softcapping
            

        logits = logits.float()
        loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            num_image_tokens = self.model.image_patch_tokens
            shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
        
        if not return_dict:
            
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output
        
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        
    
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                # print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++-  position_ids {position_ids.size()} ================= ")
                position_ids = position_ids[:, -input_ids.shape[1] :]
                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
                # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
                # during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
                # batch size = 1 case, `position_ids` is already contiguous but with varying stride
                # which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)
                # print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++-  position_ids cmlone  ==> {position_ids.size()} ================= ")

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            #print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> first generation step>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The clone here is for the same reason as for `position_ids`.
            # print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> The clone here is for the same reason as for `position_ids` ==> input_ids input_ids.clone.>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format)}

        if isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2:
            if inputs_embeds is not None and input_ids.size(1)!= 0 :
                ######################   V ############## add _ for _  = inputs_embeds.shape
                batch_size, sequence_length, _  = inputs_embeds.shape
                device = inputs_embeds.device
                #print(f"1111111 +-+-+-+-+-+-+-+-+-+-   sequence_length =  inputs_embeds  {sequence_length}")
            else:
                batch_size, sequence_length = position_ids.shape
                device = input_ids.device
                #print(f"22222222 +-+-+-+-+-+-+-+-+-+-   sequence_length = input_ids.shape  {sequence_length}")

            dtype = self.lm_head.weight.dtype
            min_dtype = torch.finfo(dtype).min

            attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
                attention_mask,
                sequence_length=sequence_length,
                target_length=past_key_values.get_max_length(),
                dtype=dtype,
                device=device,
                min_dtype=min_dtype,
                cache_position=cache_position,
                batch_size=batch_size,
            )
            

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs
        
    def generate(
            self, 
            input_ids, 
            pixel_values=None, 
            max_length=None, 
            do_sample=True, 
            temperature=0.7,
            **kwargs
            ):
        

        if pixel_values is not None:
            if input_ids is not None:
                
                inputs_embeds = self.get_input_embeddings()(input_ids)
            print("pixels")
            image_features = self._encode_image(pixel_values)
            inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
            causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=max_length)
            causal_attention_mask=causal_attention_mask.to(input_ids.device)
            self.__causal_attention_mask=causal_attention_mask
            self.model.mode='vlm'
            result = super().generate(
                input_ids=None,
                inputs_embeds=inputs_embeds,
                max_length=max_length, 
                do_sample=do_sample, 
                temperature=temperature,
                **kwargs
            )
            
        else:
            
            self.model.mode=='llm'
            result = super().generate(
                input_ids=input_ids,
                #inputs_embeds=None,
                max_length=max_length, 
                do_sample=do_sample, 
                temperature=temperature,
                **kwargs
            )
        self.__causal_attention_mask = None

        return result