lewtun HF staff commited on
Commit
0f66e97
1 Parent(s): 5c683fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -10
README.md CHANGED
@@ -1,33 +1,74 @@
1
  ---
2
- license: apache-2.0
3
  base_model: mistralai/Mistral-7B-v0.1
4
  tags:
5
  - generated_from_trainer
6
  model-index:
7
- - name: mistral-7b-ift-v11.0
8
  results: []
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
- # mistral-7b-ift-v11.0
 
 
15
 
16
- This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_uncensored_truecase_i_dont dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.9399
19
 
20
  ## Model description
21
 
22
- More information needed
 
 
 
23
 
24
- ## Intended uses & limitations
25
 
26
- More information needed
27
 
28
- ## Training and evaluation data
 
 
29
 
30
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Training procedure
33
 
@@ -60,4 +101,4 @@ The following hyperparameters were used during training:
60
  - Transformers 4.35.0.dev0
61
  - Pytorch 2.0.1+cu118
62
  - Datasets 2.12.0
63
- - Tokenizers 0.14.0
 
1
  ---
2
+ license: mit
3
  base_model: mistralai/Mistral-7B-v0.1
4
  tags:
5
  - generated_from_trainer
6
  model-index:
7
+ - name: mistral-7b-sft-beta
8
  results: []
9
+ datasets:
10
+ - HuggingFaceH4/ultrachat_200k
11
+ language:
12
+ - en
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
  should probably proofread and complete it, then remove this comment. -->
17
 
18
+ # Mistral 7B SFT β
19
+
20
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset. It is the SFT model that was used to train Zephyr-7B-β with Direct Preference Optimization.
21
 
 
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.9399
24
 
25
  ## Model description
26
 
27
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
28
+ - **Language(s) (NLP):** Primarily English
29
+ - **License:** MIT
30
+ - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
31
 
32
+ ### Model Sources
33
 
34
+ <!-- Provide the basic links for the model. -->
35
 
36
+ - **Repository:** https://github.com/huggingface/alignment-handbook
37
+
38
+ ## Intended uses & limitations
39
 
40
+ The model was fine-tuned with [🤗 TRL's](https://github.com/huggingface/trl) `SFTTrainer` on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
41
+
42
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
43
+
44
+ ```python
45
+ # Install transformers from source - only needed for versions <= v4.34
46
+ # pip install git+https://github.com/huggingface/transformers.git
47
+ # pip install accelerate
48
+
49
+ import torch
50
+ from transformers import pipeline
51
+
52
+ pipe = pipeline("text-generation", model="HuggingFaceH4/mistral-7b-sft-beta", torch_dtype=torch.bfloat16, device_map="auto")
53
+
54
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
55
+ messages = [
56
+ {
57
+ "role": "system",
58
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
59
+ },
60
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
61
+ ]
62
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
63
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
64
+ print(outputs[0]["generated_text"])
65
+ # <|system|>
66
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
67
+ # <|user|>
68
+ # How many helicopters can a human eat in one sitting?</s>
69
+ # <|assistant|>
70
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
71
+ ```
72
 
73
  ## Training procedure
74
 
 
101
  - Transformers 4.35.0.dev0
102
  - Pytorch 2.0.1+cu118
103
  - Datasets 2.12.0
104
+ - Tokenizers 0.14.0