--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-toolwear results: [] --- # segformer-b0-finetuned-segments-toolwear This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 - Mean Iou: 0.3700 - Mean Accuracy: 0.7400 - Overall Accuracy: 0.7400 - Accuracy Unlabeled: nan - Accuracy Wear: 0.7400 - Iou Unlabeled: 0.0 - Iou Wear: 0.7400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Iou Unlabeled | Iou Wear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:| | 0.6115 | 3.33 | 20 | 0.6156 | 0.4098 | 0.8197 | 0.8197 | nan | 0.8197 | 0.0 | 0.8197 | | 0.3737 | 6.67 | 40 | 0.3901 | 0.4130 | 0.8261 | 0.8261 | nan | 0.8261 | 0.0 | 0.8261 | | 0.2937 | 10.0 | 60 | 0.2764 | 0.3966 | 0.7932 | 0.7932 | nan | 0.7932 | 0.0 | 0.7932 | | 0.2457 | 13.33 | 80 | 0.2804 | 0.3957 | 0.7914 | 0.7914 | nan | 0.7914 | 0.0 | 0.7914 | | 0.2099 | 16.67 | 100 | 0.2116 | 0.4119 | 0.8238 | 0.8238 | nan | 0.8238 | 0.0 | 0.8238 | | 0.1894 | 20.0 | 120 | 0.1894 | 0.3775 | 0.7549 | 0.7549 | nan | 0.7549 | 0.0 | 0.7549 | | 0.1551 | 23.33 | 140 | 0.1515 | 0.3809 | 0.7619 | 0.7619 | nan | 0.7619 | 0.0 | 0.7619 | | 0.1511 | 26.67 | 160 | 0.1347 | 0.3719 | 0.7438 | 0.7438 | nan | 0.7438 | 0.0 | 0.7438 | | 0.1299 | 30.0 | 180 | 0.1218 | 0.3716 | 0.7432 | 0.7432 | nan | 0.7432 | 0.0 | 0.7432 | | 0.1284 | 33.33 | 200 | 0.1275 | 0.3694 | 0.7389 | 0.7389 | nan | 0.7389 | 0.0 | 0.7389 | | 0.1415 | 36.67 | 220 | 0.1096 | 0.3919 | 0.7839 | 0.7839 | nan | 0.7839 | 0.0 | 0.7839 | | 0.1032 | 40.0 | 240 | 0.1030 | 0.3766 | 0.7531 | 0.7531 | nan | 0.7531 | 0.0 | 0.7531 | | 0.1076 | 43.33 | 260 | 0.0994 | 0.3818 | 0.7635 | 0.7635 | nan | 0.7635 | 0.0 | 0.7635 | | 0.1024 | 46.67 | 280 | 0.1024 | 0.3767 | 0.7534 | 0.7534 | nan | 0.7534 | 0.0 | 0.7534 | | 0.1038 | 50.0 | 300 | 0.1003 | 0.3700 | 0.7400 | 0.7400 | nan | 0.7400 | 0.0 | 0.7400 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.13.3