HorcruxNo13
commited on
Commit
•
e4d595c
1
Parent(s):
94cb28b
update model card README.md
Browse files
README.md
CHANGED
@@ -14,14 +14,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -46,62 +46,55 @@ The following hyperparameters were used during training:
|
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
-
- num_epochs:
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy
|
54 |
-
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.0284 | 35.2 | 880 | 0.0325 | 0.4940 | 0.9879 | 0.9879 | nan | 0.9879 | 0.0 | 0.9879 |
|
99 |
-
| 0.0229 | 36.0 | 900 | 0.0317 | 0.4931 | 0.9861 | 0.9861 | nan | 0.9861 | 0.0 | 0.9861 |
|
100 |
-
| 0.0256 | 36.8 | 920 | 0.0316 | 0.4927 | 0.9854 | 0.9854 | nan | 0.9854 | 0.0 | 0.9854 |
|
101 |
-
| 0.0278 | 37.6 | 940 | 0.0319 | 0.4933 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 |
|
102 |
-
| 0.0301 | 38.4 | 960 | 0.0318 | 0.4932 | 0.9865 | 0.9865 | nan | 0.9865 | 0.0 | 0.9865 |
|
103 |
-
| 0.0233 | 39.2 | 980 | 0.0319 | 0.4934 | 0.9868 | 0.9868 | nan | 0.9868 | 0.0 | 0.9868 |
|
104 |
-
| 0.0256 | 40.0 | 1000 | 0.0316 | 0.4930 | 0.9859 | 0.9859 | nan | 0.9859 | 0.0 | 0.9859 |
|
105 |
|
106 |
|
107 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0799
|
18 |
+
- Mean Iou: 0.4629
|
19 |
+
- Mean Accuracy: 0.9258
|
20 |
+
- Overall Accuracy: 0.9258
|
21 |
- Accuracy Unlabeled: nan
|
22 |
+
- Accuracy Liver: 0.9258
|
23 |
- Iou Unlabeled: 0.0
|
24 |
+
- Iou Liver: 0.9258
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 35
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Liver | Iou Unlabeled | Iou Liver |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
|
55 |
+
| 0.2837 | 0.8 | 20 | 0.3699 | 0.3876 | 0.7752 | 0.7752 | nan | 0.7752 | 0.0 | 0.7752 |
|
56 |
+
| 0.2264 | 1.6 | 40 | 0.1982 | 0.4222 | 0.8444 | 0.8444 | nan | 0.8444 | 0.0 | 0.8444 |
|
57 |
+
| 0.1687 | 2.4 | 60 | 0.1594 | 0.3988 | 0.7977 | 0.7977 | nan | 0.7977 | 0.0 | 0.7977 |
|
58 |
+
| 0.1489 | 3.2 | 80 | 0.1396 | 0.4050 | 0.8100 | 0.8100 | nan | 0.8100 | 0.0 | 0.8100 |
|
59 |
+
| 0.1111 | 4.0 | 100 | 0.1203 | 0.4223 | 0.8446 | 0.8446 | nan | 0.8446 | 0.0 | 0.8446 |
|
60 |
+
| 0.1115 | 4.8 | 120 | 0.1160 | 0.4512 | 0.9023 | 0.9023 | nan | 0.9023 | 0.0 | 0.9023 |
|
61 |
+
| 0.1081 | 5.6 | 140 | 0.1053 | 0.4504 | 0.9009 | 0.9009 | nan | 0.9009 | 0.0 | 0.9009 |
|
62 |
+
| 0.1111 | 6.4 | 160 | 0.0960 | 0.4526 | 0.9051 | 0.9051 | nan | 0.9051 | 0.0 | 0.9051 |
|
63 |
+
| 0.0904 | 7.2 | 180 | 0.0954 | 0.4646 | 0.9292 | 0.9292 | nan | 0.9292 | 0.0 | 0.9292 |
|
64 |
+
| 0.0868 | 8.0 | 200 | 0.0925 | 0.4593 | 0.9187 | 0.9187 | nan | 0.9187 | 0.0 | 0.9187 |
|
65 |
+
| 0.092 | 8.8 | 220 | 0.0852 | 0.4630 | 0.9261 | 0.9261 | nan | 0.9261 | 0.0 | 0.9261 |
|
66 |
+
| 0.0686 | 9.6 | 240 | 0.0897 | 0.4631 | 0.9263 | 0.9263 | nan | 0.9263 | 0.0 | 0.9263 |
|
67 |
+
| 0.0684 | 10.4 | 260 | 0.0939 | 0.4727 | 0.9455 | 0.9455 | nan | 0.9455 | 0.0 | 0.9455 |
|
68 |
+
| 0.0634 | 11.2 | 280 | 0.0919 | 0.4241 | 0.8483 | 0.8483 | nan | 0.8483 | 0.0 | 0.8483 |
|
69 |
+
| 0.059 | 12.0 | 300 | 0.0886 | 0.4727 | 0.9455 | 0.9455 | nan | 0.9455 | 0.0 | 0.9455 |
|
70 |
+
| 0.052 | 12.8 | 320 | 0.0764 | 0.4554 | 0.9108 | 0.9108 | nan | 0.9108 | 0.0 | 0.9108 |
|
71 |
+
| 0.0558 | 13.6 | 340 | 0.0769 | 0.4629 | 0.9258 | 0.9258 | nan | 0.9258 | 0.0 | 0.9258 |
|
72 |
+
| 0.0594 | 14.4 | 360 | 0.0770 | 0.4616 | 0.9231 | 0.9231 | nan | 0.9231 | 0.0 | 0.9231 |
|
73 |
+
| 0.0641 | 15.2 | 380 | 0.0844 | 0.4709 | 0.9417 | 0.9417 | nan | 0.9417 | 0.0 | 0.9417 |
|
74 |
+
| 0.0645 | 16.0 | 400 | 0.0790 | 0.4632 | 0.9263 | 0.9263 | nan | 0.9263 | 0.0 | 0.9263 |
|
75 |
+
| 0.0545 | 16.8 | 420 | 0.0776 | 0.4610 | 0.9220 | 0.9220 | nan | 0.9220 | 0.0 | 0.9220 |
|
76 |
+
| 0.056 | 17.6 | 440 | 0.0780 | 0.4541 | 0.9082 | 0.9082 | nan | 0.9082 | 0.0 | 0.9082 |
|
77 |
+
| 0.0472 | 18.4 | 460 | 0.0742 | 0.4595 | 0.9189 | 0.9189 | nan | 0.9189 | 0.0 | 0.9189 |
|
78 |
+
| 0.0478 | 19.2 | 480 | 0.0806 | 0.4690 | 0.9380 | 0.9380 | nan | 0.9380 | 0.0 | 0.9380 |
|
79 |
+
| 0.0523 | 20.0 | 500 | 0.0741 | 0.4550 | 0.9100 | 0.9100 | nan | 0.9100 | 0.0 | 0.9100 |
|
80 |
+
| 0.0401 | 20.8 | 520 | 0.0794 | 0.4637 | 0.9274 | 0.9274 | nan | 0.9274 | 0.0 | 0.9274 |
|
81 |
+
| 0.041 | 21.6 | 540 | 0.0772 | 0.4631 | 0.9262 | 0.9262 | nan | 0.9262 | 0.0 | 0.9262 |
|
82 |
+
| 0.0386 | 22.4 | 560 | 0.0795 | 0.4620 | 0.9240 | 0.9240 | nan | 0.9240 | 0.0 | 0.9240 |
|
83 |
+
| 0.0386 | 23.2 | 580 | 0.0761 | 0.4616 | 0.9232 | 0.9232 | nan | 0.9232 | 0.0 | 0.9232 |
|
84 |
+
| 0.0628 | 24.0 | 600 | 0.0778 | 0.4636 | 0.9271 | 0.9271 | nan | 0.9271 | 0.0 | 0.9271 |
|
85 |
+
| 0.0387 | 24.8 | 620 | 0.0782 | 0.4613 | 0.9226 | 0.9226 | nan | 0.9226 | 0.0 | 0.9226 |
|
86 |
+
| 0.0422 | 25.6 | 640 | 0.0778 | 0.4616 | 0.9233 | 0.9233 | nan | 0.9233 | 0.0 | 0.9233 |
|
87 |
+
| 0.0392 | 26.4 | 660 | 0.0838 | 0.4696 | 0.9393 | 0.9393 | nan | 0.9393 | 0.0 | 0.9393 |
|
88 |
+
| 0.04 | 27.2 | 680 | 0.0809 | 0.4658 | 0.9315 | 0.9315 | nan | 0.9315 | 0.0 | 0.9315 |
|
89 |
+
| 0.0341 | 28.0 | 700 | 0.0822 | 0.4667 | 0.9335 | 0.9335 | nan | 0.9335 | 0.0 | 0.9335 |
|
90 |
+
| 0.0329 | 28.8 | 720 | 0.0797 | 0.4639 | 0.9278 | 0.9278 | nan | 0.9278 | 0.0 | 0.9278 |
|
91 |
+
| 0.0373 | 29.6 | 740 | 0.0769 | 0.4582 | 0.9163 | 0.9163 | nan | 0.9163 | 0.0 | 0.9163 |
|
92 |
+
| 0.0366 | 30.4 | 760 | 0.0804 | 0.4632 | 0.9264 | 0.9264 | nan | 0.9264 | 0.0 | 0.9264 |
|
93 |
+
| 0.0432 | 31.2 | 780 | 0.0793 | 0.4587 | 0.9174 | 0.9174 | nan | 0.9174 | 0.0 | 0.9174 |
|
94 |
+
| 0.0328 | 32.0 | 800 | 0.0838 | 0.4688 | 0.9377 | 0.9377 | nan | 0.9377 | 0.0 | 0.9377 |
|
95 |
+
| 0.0377 | 32.8 | 820 | 0.0805 | 0.4643 | 0.9286 | 0.9286 | nan | 0.9286 | 0.0 | 0.9286 |
|
96 |
+
| 0.0327 | 33.6 | 840 | 0.0784 | 0.4614 | 0.9228 | 0.9228 | nan | 0.9228 | 0.0 | 0.9228 |
|
97 |
+
| 0.032 | 34.4 | 860 | 0.0799 | 0.4629 | 0.9258 | 0.9258 | nan | 0.9258 | 0.0 | 0.9258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
### Framework versions
|