HorcruxNo13
commited on
Commit
•
545a27e
1
Parent(s):
52e0071
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,16 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Wear: 0.
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou Wear: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -52,21 +54,21 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Iou Unlabeled | Iou Wear |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/new_wear dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1003
|
20 |
+
- Mean Iou: 0.3700
|
21 |
+
- Mean Accuracy: 0.7400
|
22 |
+
- Overall Accuracy: 0.7400
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Wear: 0.7400
|
25 |
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Wear: 0.7400
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Iou Unlabeled | Iou Wear |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
57 |
+
| 0.6115 | 3.33 | 20 | 0.6156 | 0.4098 | 0.8197 | 0.8197 | nan | 0.8197 | 0.0 | 0.8197 |
|
58 |
+
| 0.3737 | 6.67 | 40 | 0.3901 | 0.4130 | 0.8261 | 0.8261 | nan | 0.8261 | 0.0 | 0.8261 |
|
59 |
+
| 0.2937 | 10.0 | 60 | 0.2764 | 0.3966 | 0.7932 | 0.7932 | nan | 0.7932 | 0.0 | 0.7932 |
|
60 |
+
| 0.2457 | 13.33 | 80 | 0.2804 | 0.3957 | 0.7914 | 0.7914 | nan | 0.7914 | 0.0 | 0.7914 |
|
61 |
+
| 0.2099 | 16.67 | 100 | 0.2116 | 0.4119 | 0.8238 | 0.8238 | nan | 0.8238 | 0.0 | 0.8238 |
|
62 |
+
| 0.1894 | 20.0 | 120 | 0.1894 | 0.3775 | 0.7549 | 0.7549 | nan | 0.7549 | 0.0 | 0.7549 |
|
63 |
+
| 0.1551 | 23.33 | 140 | 0.1515 | 0.3809 | 0.7619 | 0.7619 | nan | 0.7619 | 0.0 | 0.7619 |
|
64 |
+
| 0.1511 | 26.67 | 160 | 0.1347 | 0.3719 | 0.7438 | 0.7438 | nan | 0.7438 | 0.0 | 0.7438 |
|
65 |
+
| 0.1299 | 30.0 | 180 | 0.1218 | 0.3716 | 0.7432 | 0.7432 | nan | 0.7432 | 0.0 | 0.7432 |
|
66 |
+
| 0.1284 | 33.33 | 200 | 0.1275 | 0.3694 | 0.7389 | 0.7389 | nan | 0.7389 | 0.0 | 0.7389 |
|
67 |
+
| 0.1415 | 36.67 | 220 | 0.1096 | 0.3919 | 0.7839 | 0.7839 | nan | 0.7839 | 0.0 | 0.7839 |
|
68 |
+
| 0.1032 | 40.0 | 240 | 0.1030 | 0.3766 | 0.7531 | 0.7531 | nan | 0.7531 | 0.0 | 0.7531 |
|
69 |
+
| 0.1076 | 43.33 | 260 | 0.0994 | 0.3818 | 0.7635 | 0.7635 | nan | 0.7635 | 0.0 | 0.7635 |
|
70 |
+
| 0.1024 | 46.67 | 280 | 0.1024 | 0.3767 | 0.7534 | 0.7534 | nan | 0.7534 | 0.0 | 0.7534 |
|
71 |
+
| 0.1038 | 50.0 | 300 | 0.1003 | 0.3700 | 0.7400 | 0.7400 | nan | 0.7400 | 0.0 | 0.7400 |
|
72 |
|
73 |
|
74 |
### Framework versions
|