HorcruxNo13
commited on
Commit
•
0bd5730
1
Parent(s):
efd7168
update model card README.md
Browse files
README.md
CHANGED
@@ -14,14 +14,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -40,65 +40,73 @@ More information needed
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
- learning_rate:
|
44 |
-
- train_batch_size:
|
45 |
-
- eval_batch_size:
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
-
- num_epochs:
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy
|
54 |
-
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
### Framework versions
|
100 |
|
101 |
- Transformers 4.28.0
|
102 |
-
- Pytorch 2.1
|
103 |
-
- Datasets 2.
|
104 |
- Tokenizers 0.13.3
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0316
|
18 |
+
- Mean Iou: 0.4930
|
19 |
+
- Mean Accuracy: 0.9859
|
20 |
+
- Overall Accuracy: 0.9859
|
21 |
- Accuracy Unlabeled: nan
|
22 |
+
- Accuracy Outline: 0.9859
|
23 |
- Iou Unlabeled: 0.0
|
24 |
+
- Iou Outline: 0.9859
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
+
- train_batch_size: 24
|
45 |
+
- eval_batch_size: 24
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 40
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Outline | Iou Unlabeled | Iou Outline |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|
|
55 |
+
| 0.1277 | 0.8 | 20 | 0.1795 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
|
56 |
+
| 0.1026 | 1.6 | 40 | 0.0920 | 0.4764 | 0.9529 | 0.9529 | nan | 0.9529 | 0.0 | 0.9529 |
|
57 |
+
| 0.0934 | 2.4 | 60 | 0.0782 | 0.4859 | 0.9718 | 0.9718 | nan | 0.9718 | 0.0 | 0.9718 |
|
58 |
+
| 0.0682 | 3.2 | 80 | 0.0656 | 0.4862 | 0.9724 | 0.9724 | nan | 0.9724 | 0.0 | 0.9724 |
|
59 |
+
| 0.054 | 4.0 | 100 | 0.0584 | 0.4885 | 0.9769 | 0.9769 | nan | 0.9769 | 0.0 | 0.9769 |
|
60 |
+
| 0.0529 | 4.8 | 120 | 0.0528 | 0.4894 | 0.9787 | 0.9787 | nan | 0.9787 | 0.0 | 0.9787 |
|
61 |
+
| 0.0586 | 5.6 | 140 | 0.0498 | 0.4885 | 0.9771 | 0.9771 | nan | 0.9771 | 0.0 | 0.9771 |
|
62 |
+
| 0.0538 | 6.4 | 160 | 0.0464 | 0.4878 | 0.9756 | 0.9756 | nan | 0.9756 | 0.0 | 0.9756 |
|
63 |
+
| 0.0422 | 7.2 | 180 | 0.0443 | 0.4926 | 0.9851 | 0.9851 | nan | 0.9851 | 0.0 | 0.9851 |
|
64 |
+
| 0.0517 | 8.0 | 200 | 0.0443 | 0.4914 | 0.9828 | 0.9828 | nan | 0.9828 | 0.0 | 0.9828 |
|
65 |
+
| 0.0439 | 8.8 | 220 | 0.0409 | 0.4912 | 0.9824 | 0.9824 | nan | 0.9824 | 0.0 | 0.9824 |
|
66 |
+
| 0.0357 | 9.6 | 240 | 0.0394 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
|
67 |
+
| 0.0381 | 10.4 | 260 | 0.0393 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
|
68 |
+
| 0.0362 | 11.2 | 280 | 0.0396 | 0.4931 | 0.9863 | 0.9863 | nan | 0.9863 | 0.0 | 0.9863 |
|
69 |
+
| 0.0317 | 12.0 | 300 | 0.0373 | 0.4922 | 0.9844 | 0.9844 | nan | 0.9844 | 0.0 | 0.9844 |
|
70 |
+
| 0.0342 | 12.8 | 320 | 0.0423 | 0.4950 | 0.9899 | 0.9899 | nan | 0.9899 | 0.0 | 0.9899 |
|
71 |
+
| 0.0341 | 13.6 | 340 | 0.0374 | 0.4925 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 | 0.9849 |
|
72 |
+
| 0.0347 | 14.4 | 360 | 0.0358 | 0.4921 | 0.9842 | 0.9842 | nan | 0.9842 | 0.0 | 0.9842 |
|
73 |
+
| 0.0351 | 15.2 | 380 | 0.0358 | 0.4928 | 0.9855 | 0.9855 | nan | 0.9855 | 0.0 | 0.9855 |
|
74 |
+
| 0.0589 | 16.0 | 400 | 0.0346 | 0.4908 | 0.9816 | 0.9816 | nan | 0.9816 | 0.0 | 0.9816 |
|
75 |
+
| 0.0354 | 16.8 | 420 | 0.0353 | 0.4945 | 0.9891 | 0.9891 | nan | 0.9891 | 0.0 | 0.9891 |
|
76 |
+
| 0.0349 | 17.6 | 440 | 0.0346 | 0.4899 | 0.9797 | 0.9797 | nan | 0.9797 | 0.0 | 0.9797 |
|
77 |
+
| 0.0357 | 18.4 | 460 | 0.0340 | 0.4927 | 0.9855 | 0.9855 | nan | 0.9855 | 0.0 | 0.9855 |
|
78 |
+
| 0.032 | 19.2 | 480 | 0.0348 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
|
79 |
+
| 0.0365 | 20.0 | 500 | 0.0337 | 0.4924 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 | 0.9849 |
|
80 |
+
| 0.0361 | 20.8 | 520 | 0.0334 | 0.4932 | 0.9863 | 0.9863 | nan | 0.9863 | 0.0 | 0.9863 |
|
81 |
+
| 0.0411 | 21.6 | 540 | 0.0324 | 0.4921 | 0.9843 | 0.9843 | nan | 0.9843 | 0.0 | 0.9843 |
|
82 |
+
| 0.0335 | 22.4 | 560 | 0.0329 | 0.4932 | 0.9864 | 0.9864 | nan | 0.9864 | 0.0 | 0.9864 |
|
83 |
+
| 0.0285 | 23.2 | 580 | 0.0327 | 0.4924 | 0.9847 | 0.9847 | nan | 0.9847 | 0.0 | 0.9847 |
|
84 |
+
| 0.0339 | 24.0 | 600 | 0.0328 | 0.4913 | 0.9827 | 0.9827 | nan | 0.9827 | 0.0 | 0.9827 |
|
85 |
+
| 0.034 | 24.8 | 620 | 0.0323 | 0.4934 | 0.9869 | 0.9869 | nan | 0.9869 | 0.0 | 0.9869 |
|
86 |
+
| 0.0314 | 25.6 | 640 | 0.0336 | 0.4940 | 0.9880 | 0.9880 | nan | 0.9880 | 0.0 | 0.9880 |
|
87 |
+
| 0.029 | 26.4 | 660 | 0.0324 | 0.4926 | 0.9853 | 0.9853 | nan | 0.9853 | 0.0 | 0.9853 |
|
88 |
+
| 0.0371 | 27.2 | 680 | 0.0324 | 0.4917 | 0.9833 | 0.9833 | nan | 0.9833 | 0.0 | 0.9833 |
|
89 |
+
| 0.0288 | 28.0 | 700 | 0.0322 | 0.4931 | 0.9862 | 0.9862 | nan | 0.9862 | 0.0 | 0.9862 |
|
90 |
+
| 0.0297 | 28.8 | 720 | 0.0320 | 0.4925 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 | 0.9849 |
|
91 |
+
| 0.0256 | 29.6 | 740 | 0.0321 | 0.4923 | 0.9846 | 0.9846 | nan | 0.9846 | 0.0 | 0.9846 |
|
92 |
+
| 0.033 | 30.4 | 760 | 0.0317 | 0.4926 | 0.9852 | 0.9852 | nan | 0.9852 | 0.0 | 0.9852 |
|
93 |
+
| 0.0251 | 31.2 | 780 | 0.0328 | 0.4943 | 0.9887 | 0.9887 | nan | 0.9887 | 0.0 | 0.9887 |
|
94 |
+
| 0.0286 | 32.0 | 800 | 0.0322 | 0.4938 | 0.9876 | 0.9876 | nan | 0.9876 | 0.0 | 0.9876 |
|
95 |
+
| 0.0273 | 32.8 | 820 | 0.0318 | 0.4930 | 0.9859 | 0.9859 | nan | 0.9859 | 0.0 | 0.9859 |
|
96 |
+
| 0.0289 | 33.6 | 840 | 0.0325 | 0.4937 | 0.9873 | 0.9873 | nan | 0.9873 | 0.0 | 0.9873 |
|
97 |
+
| 0.0279 | 34.4 | 860 | 0.0325 | 0.4937 | 0.9874 | 0.9874 | nan | 0.9874 | 0.0 | 0.9874 |
|
98 |
+
| 0.0284 | 35.2 | 880 | 0.0325 | 0.4940 | 0.9879 | 0.9879 | nan | 0.9879 | 0.0 | 0.9879 |
|
99 |
+
| 0.0229 | 36.0 | 900 | 0.0317 | 0.4931 | 0.9861 | 0.9861 | nan | 0.9861 | 0.0 | 0.9861 |
|
100 |
+
| 0.0256 | 36.8 | 920 | 0.0316 | 0.4927 | 0.9854 | 0.9854 | nan | 0.9854 | 0.0 | 0.9854 |
|
101 |
+
| 0.0278 | 37.6 | 940 | 0.0319 | 0.4933 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 |
|
102 |
+
| 0.0301 | 38.4 | 960 | 0.0318 | 0.4932 | 0.9865 | 0.9865 | nan | 0.9865 | 0.0 | 0.9865 |
|
103 |
+
| 0.0233 | 39.2 | 980 | 0.0319 | 0.4934 | 0.9868 | 0.9868 | nan | 0.9868 | 0.0 | 0.9868 |
|
104 |
+
| 0.0256 | 40.0 | 1000 | 0.0316 | 0.4930 | 0.9859 | 0.9859 | nan | 0.9859 | 0.0 | 0.9859 |
|
105 |
|
106 |
|
107 |
### Framework versions
|
108 |
|
109 |
- Transformers 4.28.0
|
110 |
+
- Pytorch 2.2.1+cu121
|
111 |
+
- Datasets 2.18.0
|
112 |
- Tokenizers 0.13.3
|