File size: 4,158 Bytes
b3fd691 8735b9f b3fd691 eeb6f27 b3fd691 eeb6f27 b3fd691 eeb6f27 b3fd691 eeb6f27 b3fd691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-toolwear
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1338
- Mean Iou: 0.4591
- Mean Accuracy: 0.7164
- Overall Accuracy: 0.9595
- Accuracy Unlabeled: nan
- Accuracy Wear: 0.4489
- Accuracy Tool: 0.9838
- Iou Unlabeled: 0.0
- Iou Wear: 0.4154
- Iou Tool: 0.9618
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Accuracy Tool | Iou Unlabeled | Iou Wear | Iou Tool |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
| 0.5488 | 1.82 | 20 | 0.7199 | 0.3293 | 0.5153 | 0.9405 | nan | 0.0476 | 0.9830 | 0.0 | 0.0475 | 0.9404 |
| 0.5195 | 3.64 | 40 | 0.3507 | 0.3622 | 0.5634 | 0.9239 | nan | 0.1667 | 0.9600 | 0.0 | 0.1629 | 0.9236 |
| 0.2738 | 5.45 | 60 | 0.2569 | 0.4662 | 0.7496 | 0.9435 | nan | 0.5363 | 0.9629 | 0.0 | 0.4547 | 0.9438 |
| 0.2461 | 7.27 | 80 | 0.2220 | 0.4491 | 0.7057 | 0.9482 | nan | 0.4389 | 0.9725 | 0.0 | 0.3982 | 0.9492 |
| 0.1999 | 9.09 | 100 | 0.1962 | 0.4492 | 0.7084 | 0.9597 | nan | 0.4319 | 0.9848 | 0.0 | 0.3860 | 0.9616 |
| 0.2004 | 10.91 | 120 | 0.1890 | 0.4031 | 0.6239 | 0.9537 | nan | 0.2610 | 0.9867 | 0.0 | 0.2539 | 0.9553 |
| 0.4753 | 12.73 | 140 | 0.1704 | 0.4360 | 0.6760 | 0.9494 | nan | 0.3753 | 0.9768 | 0.0 | 0.3562 | 0.9518 |
| 0.1606 | 14.55 | 160 | 0.1579 | 0.4483 | 0.7028 | 0.9580 | nan | 0.4222 | 0.9835 | 0.0 | 0.3822 | 0.9625 |
| 0.1388 | 16.36 | 180 | 0.1519 | 0.4829 | 0.7940 | 0.9565 | nan | 0.6152 | 0.9728 | 0.0 | 0.4900 | 0.9586 |
| 0.138 | 18.18 | 200 | 0.1374 | 0.5120 | 0.8119 | 0.9643 | nan | 0.6443 | 0.9795 | 0.0 | 0.5693 | 0.9668 |
| 0.1078 | 20.0 | 220 | 0.1400 | 0.4541 | 0.7066 | 0.9606 | nan | 0.4271 | 0.9860 | 0.0 | 0.3985 | 0.9638 |
| 0.1426 | 21.82 | 240 | 0.1323 | 0.4530 | 0.7053 | 0.9581 | nan | 0.4272 | 0.9834 | 0.0 | 0.3978 | 0.9611 |
| 0.3498 | 23.64 | 260 | 0.1338 | 0.4591 | 0.7164 | 0.9595 | nan | 0.4489 | 0.9838 | 0.0 | 0.4154 | 0.9618 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|