Hiveurban commited on
Commit
a6633be
1 Parent(s): 44ef5e1

Upload BertForMorphTagging.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. BertForMorphTagging.py +212 -0
BertForMorphTagging.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from operator import itemgetter
3
+ from transformers.utils import ModelOutput
4
+ import torch
5
+ from torch import nn
6
+ from typing import Dict, List, Tuple, Optional
7
+ from dataclasses import dataclass
8
+ from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
9
+
10
+ ALL_POS = ['DET', 'NOUN', 'VERB', 'CCONJ', 'ADP', 'PRON', 'PUNCT', 'ADJ', 'ADV', 'SCONJ', 'NUM', 'PROPN', 'AUX', 'X', 'INTJ', 'SYM']
11
+ ALL_PREFIX_POS = ['SCONJ', 'DET', 'ADV', 'CCONJ', 'ADP', 'NUM']
12
+ ALL_SUFFIX_POS = ['none', 'ADP_PRON', 'PRON']
13
+ ALL_FEATURES = [
14
+ ('Gender', ['none', 'Masc', 'Fem', 'Fem,Masc']),
15
+ ('Number', ['none', 'Sing', 'Plur', 'Plur,Sing', 'Dual', 'Dual,Plur']),
16
+ ('Person', ['none', '1', '2', '3', '1,2,3']),
17
+ ('Tense', ['none', 'Past', 'Fut', 'Pres', 'Imp'])
18
+ ]
19
+
20
+ @dataclass
21
+ class MorphLogitsOutput(ModelOutput):
22
+ prefix_logits: torch.FloatTensor = None
23
+ pos_logits: torch.FloatTensor = None
24
+ features_logits: List[torch.FloatTensor] = None
25
+ suffix_logits: torch.FloatTensor = None
26
+ suffix_features_logits: List[torch.FloatTensor] = None
27
+
28
+ def detach(self):
29
+ return MorphLogitsOutput(self.prefix_logits.detach(), self.pos_logits.detach(), [logits.deatch() for logits in self.features_logits], self.suffix_logits.detach(), [logits.deatch() for logits in self.suffix_features_logits])
30
+
31
+
32
+ @dataclass
33
+ class MorphTaggingOutput(ModelOutput):
34
+ loss: Optional[torch.FloatTensor] = None
35
+ logits: Optional[MorphLogitsOutput] = None
36
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
37
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
38
+
39
+ @dataclass
40
+ class MorphLabels(ModelOutput):
41
+ prefix_labels: Optional[torch.FloatTensor] = None
42
+ pos_labels: Optional[torch.FloatTensor] = None
43
+ features_labels: Optional[List[torch.FloatTensor]] = None
44
+ suffix_labels: Optional[torch.FloatTensor] = None
45
+ suffix_features_labels: Optional[List[torch.FloatTensor]] = None
46
+
47
+ def detach(self):
48
+ return MorphLabels(self.prefix_labels.detach(), self.pos_labels.detach(), [labels.detach() for labels in self.features_labels], self.suffix_labels.detach(), [labels.detach() for labels in self.suffix_features_labels])
49
+
50
+ def to(self, device):
51
+ return MorphLabels(self.prefix_labels.to(device), self.pos_labels.to(device), [feat.to(device) for feat in self.features_labels], self.suffix_labels.to(device), [feat.to(device) for feat in self.suffix_features_labels])
52
+
53
+ class BertMorphTaggingHead(nn.Module):
54
+ def __init__(self, config):
55
+ super().__init__()
56
+ self.config = config
57
+
58
+ self.num_prefix_classes = len(ALL_PREFIX_POS)
59
+ self.num_pos_classes = len(ALL_POS)
60
+ self.num_suffix_classes = len(ALL_SUFFIX_POS)
61
+ self.num_features_classes = list(map(len, map(itemgetter(1), ALL_FEATURES)))
62
+ # we need a classifier for prefix cls and POS cls
63
+ # the prefix will use BCEWithLogits for multiple labels cls
64
+ self.prefix_cls = nn.Linear(config.hidden_size, self.num_prefix_classes)
65
+ # and pos + feats will use good old cross entropy for single label
66
+ self.pos_cls = nn.Linear(config.hidden_size, self.num_pos_classes)
67
+ self.features_cls = nn.ModuleList([nn.Linear(config.hidden_size, len(features)) for _, features in ALL_FEATURES])
68
+ # and suffix + feats will also be cross entropy
69
+ self.suffix_cls = nn.Linear(config.hidden_size, self.num_suffix_classes)
70
+ self.suffix_features_cls = nn.ModuleList([nn.Linear(config.hidden_size, len(features)) for _, features in ALL_FEATURES])
71
+
72
+ def forward(
73
+ self,
74
+ hidden_states: torch.Tensor,
75
+ labels: Optional[MorphLabels] = None):
76
+ # run each of the classifiers on the transformed output
77
+ prefix_logits = self.prefix_cls(hidden_states)
78
+ pos_logits = self.pos_cls(hidden_states)
79
+ suffix_logits = self.suffix_cls(hidden_states)
80
+ features_logits = [cls(hidden_states) for cls in self.features_cls]
81
+ suffix_features_logits = [cls(hidden_states) for cls in self.suffix_features_cls]
82
+
83
+ loss = None
84
+ if labels is not None:
85
+ # step 1: prefix labels loss
86
+ loss_fct = nn.BCEWithLogitsLoss(weight=(labels.prefix_labels != -100).float())
87
+ loss = loss_fct(prefix_logits, labels.prefix_labels)
88
+ # step 2: pos labels loss
89
+ loss_fct = nn.CrossEntropyLoss()
90
+ loss += loss_fct(pos_logits.view(-1, self.num_pos_classes), labels.pos_labels.view(-1))
91
+ # step 2b: features
92
+ for feat_logits,feat_labels,num_features in zip(features_logits, labels.features_labels, self.num_features_classes):
93
+ loss += loss_fct(feat_logits.view(-1, num_features), feat_labels.view(-1))
94
+ # step 3: suffix logits loss
95
+ loss += loss_fct(suffix_logits.view(-1, self.num_suffix_classes), labels.suffix_labels.view(-1))
96
+ # step 3b: suffix features
97
+ for feat_logits,feat_labels,num_features in zip(suffix_features_logits, labels.suffix_features_labels, self.num_features_classes):
98
+ loss += loss_fct(feat_logits.view(-1, num_features), feat_labels.view(-1))
99
+
100
+ return loss, MorphLogitsOutput(prefix_logits, pos_logits, features_logits, suffix_logits, suffix_features_logits)
101
+
102
+ class BertForMorphTagging(BertPreTrainedModel):
103
+
104
+ def __init__(self, config):
105
+ super().__init__(config)
106
+
107
+ self.bert = BertModel(config, add_pooling_layer=False)
108
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
109
+ self.morph = BertMorphTaggingHead(config)
110
+
111
+ # Initialize weights and apply final processing
112
+ self.post_init()
113
+
114
+ def forward(
115
+ self,
116
+ input_ids: Optional[torch.Tensor] = None,
117
+ attention_mask: Optional[torch.Tensor] = None,
118
+ token_type_ids: Optional[torch.Tensor] = None,
119
+ position_ids: Optional[torch.Tensor] = None,
120
+ labels: Optional[MorphLabels] = None,
121
+ head_mask: Optional[torch.Tensor] = None,
122
+ inputs_embeds: Optional[torch.Tensor] = None,
123
+ output_attentions: Optional[bool] = None,
124
+ output_hidden_states: Optional[bool] = None,
125
+ return_dict: Optional[bool] = None,
126
+ ):
127
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
128
+
129
+ bert_outputs = self.bert(
130
+ input_ids,
131
+ attention_mask=attention_mask,
132
+ token_type_ids=token_type_ids,
133
+ position_ids=position_ids,
134
+ head_mask=head_mask,
135
+ inputs_embeds=inputs_embeds,
136
+ output_attentions=output_attentions,
137
+ output_hidden_states=output_hidden_states,
138
+ return_dict=return_dict,
139
+ )
140
+
141
+ hidden_states = bert_outputs[0]
142
+ hidden_states = self.dropout(hidden_states)
143
+
144
+ loss, logits = self.morph(hidden_states, labels)
145
+
146
+ if not return_dict:
147
+ return (loss,logits) + bert_outputs[2:]
148
+
149
+ return MorphTaggingOutput(
150
+ loss=loss,
151
+ logits=logits,
152
+ hidden_states=bert_outputs.hidden_states,
153
+ attentions=bert_outputs.attentions,
154
+ )
155
+
156
+ def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, padding='longest'):
157
+ # tokenize the inputs and convert them to relevant device
158
+ inputs = tokenizer(sentences, padding=padding, truncation=True, return_tensors='pt')
159
+ inputs = {k:v.to(self.device) for k,v in inputs.items()}
160
+ # calculate the logits
161
+ logits = self.forward(**inputs, return_dict=True).logits
162
+ return parse_logits(inputs['input_ids'].tolist(), sentences, tokenizer, logits)
163
+
164
+ def parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: MorphLogitsOutput):
165
+ prefix_logits, pos_logits, feats_logits, suffix_logits, suffix_feats_logits = \
166
+ logits.prefix_logits, logits.pos_logits, logits.features_logits, logits.suffix_logits, logits.suffix_features_logits
167
+
168
+ prefix_predictions = (prefix_logits > 0.5).int().tolist() # Threshold at 0.5 for multi-label classification
169
+ pos_predictions = pos_logits.argmax(axis=-1).tolist()
170
+ suffix_predictions = suffix_logits.argmax(axis=-1).tolist()
171
+ feats_predictions = [logits.argmax(axis=-1).tolist() for logits in feats_logits]
172
+ suffix_feats_predictions = [logits.argmax(axis=-1).tolist() for logits in suffix_feats_logits]
173
+
174
+ # create the return dictionary
175
+ # for each sentence, return a dict object with the following files { text, tokens }
176
+ # Where tokens is a list of dicts, where each dict is:
177
+ # { pos: str, feats: dict, prefixes: List[str], suffix: str | bool, suffix_feats: dict | None}
178
+ special_toks = tokenizer.all_special_tokens
179
+ ret = []
180
+ for sent_idx,sentence in enumerate(sentences):
181
+ input_id_strs = tokenizer.convert_ids_to_tokens(input_ids[sent_idx])
182
+ # iterate through each token in the sentence, ignoring special tokens
183
+ tokens = []
184
+ for token_idx,token_str in enumerate(input_id_strs):
185
+ if token_str in special_toks: continue
186
+ if token_str.startswith('##'):
187
+ tokens[-1]['token'] += token_str[2:]
188
+ continue
189
+ tokens.append(dict(
190
+ token=token_str,
191
+ pos=ALL_POS[pos_predictions[sent_idx][token_idx]],
192
+ feats=get_features_dict_from_predictions(feats_predictions, (sent_idx, token_idx)),
193
+ prefixes=[ALL_PREFIX_POS[idx] for idx,i in enumerate(prefix_predictions[sent_idx][token_idx]) if i > 0],
194
+ suffix=get_suffix_or_false(ALL_SUFFIX_POS[suffix_predictions[sent_idx][token_idx]]),
195
+ ))
196
+ if tokens[-1]['suffix']:
197
+ tokens[-1]['suffix_feats'] = get_features_dict_from_predictions(suffix_feats_predictions, (sent_idx, token_idx))
198
+ ret.append(dict(text=sentence, tokens=tokens))
199
+ return ret
200
+
201
+ def get_suffix_or_false(suffix):
202
+ return False if suffix == 'none' else suffix
203
+
204
+ def get_features_dict_from_predictions(predictions, idx):
205
+ ret = {}
206
+ for (feat_idx, (feat_name, feat_values)) in enumerate(ALL_FEATURES):
207
+ val = feat_values[predictions[feat_idx][idx[0]][idx[1]]]
208
+ if val != 'none':
209
+ ret[feat_name] = val
210
+ return ret
211
+
212
+