Update README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ inference: true
|
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
|
20 |
-
#
|
21 |
|
22 |
These are control-lora-v3 weights trained on stabilityai/stable-diffusion-xl-base-1.0 with new type of conditioning.
|
23 |
You can find some example images below.
|
@@ -37,8 +37,58 @@ prompt: portrait of a dancing eagle woman, beautiful blonde haired lakota sioux
|
|
37 |
|
38 |
#### How to use
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
```
|
43 |
|
44 |
#### Limitations and bias
|
|
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
|
20 |
+
# sdxl-control-lora-v3-canny
|
21 |
|
22 |
These are control-lora-v3 weights trained on stabilityai/stable-diffusion-xl-base-1.0 with new type of conditioning.
|
23 |
You can find some example images below.
|
|
|
37 |
|
38 |
#### How to use
|
39 |
|
40 |
+
First clone the [control-lora-v3](https://github.com/HighCWu/control-lora-v3) and `cd` in the directory:
|
41 |
+
```sh
|
42 |
+
git clone https://github.com/HighCWu/control-lora-v3
|
43 |
+
cd control-lora-v3
|
44 |
+
```
|
45 |
+
|
46 |
+
Then run the python code:
|
47 |
+
```py
|
48 |
+
# !pip install opencv-python transformers accelerate
|
49 |
+
from diffusers import AutoencoderKL
|
50 |
+
from diffusers.utils import load_image
|
51 |
+
from model import UNet2DConditionModelEx
|
52 |
+
from pipeline_sdxl import StableDiffusionXLControlLoraV3Pipeline
|
53 |
+
import numpy as np
|
54 |
+
import torch
|
55 |
+
|
56 |
+
import cv2
|
57 |
+
from PIL import Image
|
58 |
+
|
59 |
+
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
60 |
+
negative_prompt = "low quality, bad quality, sketches"
|
61 |
+
|
62 |
+
# download an image
|
63 |
+
image = load_image(
|
64 |
+
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
65 |
+
)
|
66 |
+
|
67 |
+
# initialize the models and pipeline
|
68 |
+
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
|
69 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
|
70 |
+
)
|
71 |
+
unet = unet.add_extra_conditions(["canny"])
|
72 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
73 |
+
pipe = StableDiffusionXLControlLoraV3Pipeline.from_pretrained(
|
74 |
+
"stabilityai/stable-diffusion-xl-base-1.0", unet=unet, vae=vae, torch_dtype=torch.float16
|
75 |
+
)
|
76 |
+
# load attention processors
|
77 |
+
pipe.load_lora_weights("HighCWu/sdxl-control-lora-v3-canny")
|
78 |
+
pipe.enable_model_cpu_offload()
|
79 |
+
|
80 |
+
# get canny image
|
81 |
+
image = np.array(image)
|
82 |
+
image = cv2.Canny(image, 100, 200)
|
83 |
+
image = image[:, :, None]
|
84 |
+
image = np.concatenate([image, image, image], axis=2)
|
85 |
+
canny_image = Image.fromarray(image)
|
86 |
+
|
87 |
+
# generate image
|
88 |
+
image = pipe(
|
89 |
+
prompt, image=canny_image
|
90 |
+
).images[0]
|
91 |
+
image.show()
|
92 |
```
|
93 |
|
94 |
#### Limitations and bias
|