--- base_model: - AI-MO/NuminaMath-7B-TIR - deepseek-ai/DeepSeek-Prover-V1.5-RL license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - AI-MO/NuminaMath-7B-TIR - deepseek-ai/DeepSeek-Prover-V1.5-RL --- # Mathmate-7B-dare-ties Mathmate-7B-dare-ties is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [AI-MO/NuminaMath-7B-TIR](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) * [deepseek-ai/DeepSeek-Prover-V1.5-RL](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-RL) ## 🧩 Configuration ```yaml base_model: AI-MO/NuminaMath-7B-TIR gate_mode: hidden dtype: bfloat16 experts: - source_model: AI-MO/NuminaMath-7B-TIR positive_prompts: - "This model is good at solving math questions at high school level and generating python code for the same" # - source_model: Qwen/Qwen2-Math-7B-Instruct # positive_prompts: # - "This model is really good at solving college level math to olympiad level questions" - source_model: deepseek-ai/DeepSeek-Prover-V1.5-RL positive_prompts: - "This model is good at formal theorem providing math problems" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Haleshot/Mathmate-7B-dare-ties" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```