Upload pipeline.py
Browse files- pipeline.py +466 -0
pipeline.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# More information and citation instructions are available on the
|
17 |
+
# Marigold project website: https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
# @GonzaloMartinGarcia
|
21 |
+
# Inference Pipeline for End-to-End Marigold and Stable Diffusion Depth Estimators
|
22 |
+
# ----------------------------------------------------------------------------------
|
23 |
+
# A streamlined version of the official MarigoldDepthPipeline from diffusers:
|
24 |
+
# https://github.com/huggingface/diffusers/blob/a98a839de75f1ad82d8d200c3bc2e4ff89929081/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py#L96
|
25 |
+
#
|
26 |
+
# This implementation is meant for use with the diffusers custom_pipeline feature.
|
27 |
+
# Modifications from the original code are marked with '# add' comments.
|
28 |
+
|
29 |
+
from dataclasses import dataclass
|
30 |
+
from typing import List, Optional, Tuple, Union
|
31 |
+
|
32 |
+
import numpy as np
|
33 |
+
import torch
|
34 |
+
from PIL import Image
|
35 |
+
from tqdm.auto import tqdm
|
36 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
37 |
+
|
38 |
+
from diffusers.image_processor import PipelineImageInput
|
39 |
+
from diffusers.models import (
|
40 |
+
AutoencoderKL,
|
41 |
+
UNet2DConditionModel,
|
42 |
+
)
|
43 |
+
from diffusers.schedulers import (
|
44 |
+
DDIMScheduler,
|
45 |
+
)
|
46 |
+
from diffusers.utils import (
|
47 |
+
BaseOutput,
|
48 |
+
logging,
|
49 |
+
)
|
50 |
+
from diffusers import DiffusionPipeline
|
51 |
+
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
|
52 |
+
|
53 |
+
# add
|
54 |
+
def zeros_tensor(
|
55 |
+
shape: Union[Tuple, List],
|
56 |
+
device: Optional["torch.device"] = None,
|
57 |
+
dtype: Optional["torch.dtype"] = None,
|
58 |
+
layout: Optional["torch.layout"] = None,
|
59 |
+
):
|
60 |
+
"""
|
61 |
+
A helper function to create tensors of zeros on the desired `device`.
|
62 |
+
Mirrors randn_tensor from diffusers.utils.torch_utils.
|
63 |
+
"""
|
64 |
+
layout = layout or torch.strided
|
65 |
+
device = device or torch.device("cpu")
|
66 |
+
latents = torch.zeros(list(shape), dtype=dtype, layout=layout).to(device)
|
67 |
+
return latents
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
71 |
+
|
72 |
+
@dataclass
|
73 |
+
class E2EMarigoldDepthOutput(BaseOutput):
|
74 |
+
"""
|
75 |
+
Output class for Marigold monocular depth prediction pipeline.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
prediction (`np.ndarray`, `torch.Tensor`):
|
79 |
+
Predicted depth maps with values in the range [0, 1]. The shape is always $numimages \times 1 \times height
|
80 |
+
\times width$, regardless of whether the images were passed as a 4D array or a list.
|
81 |
+
latent (`None`, `torch.Tensor`):
|
82 |
+
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
83 |
+
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
84 |
+
"""
|
85 |
+
|
86 |
+
prediction: Union[np.ndarray, torch.Tensor]
|
87 |
+
latent: Union[None, torch.Tensor]
|
88 |
+
|
89 |
+
|
90 |
+
class E2EMarigoldDepthPipeline(DiffusionPipeline):
|
91 |
+
"""
|
92 |
+
# add
|
93 |
+
Pipeline for monocular depth estimation using the E2E FT Marigold and SD method: https://gonzalomartingarcia.github.io/diffusion-e2e-ft/
|
94 |
+
Implementation is built upon Marigold: https://marigoldmonodepth.github.io
|
95 |
+
|
96 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
97 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
98 |
+
|
99 |
+
Args:
|
100 |
+
unet (`UNet2DConditionModel`):
|
101 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
102 |
+
vae (`AutoencoderKL`):
|
103 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and predictions to and from latent
|
104 |
+
representations.
|
105 |
+
scheduler (`DDIMScheduler`):
|
106 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
107 |
+
text_encoder (`CLIPTextModel`):
|
108 |
+
Text-encoder, for empty text embedding.
|
109 |
+
tokenizer (`CLIPTokenizer`):
|
110 |
+
CLIP tokenizer.
|
111 |
+
default_processing_resolution (`int`, *optional*):
|
112 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
113 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
114 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
115 |
+
with varying optimal processing resolution values.
|
116 |
+
"""
|
117 |
+
|
118 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
unet: UNet2DConditionModel,
|
123 |
+
vae: AutoencoderKL,
|
124 |
+
scheduler: Union[DDIMScheduler],
|
125 |
+
text_encoder: CLIPTextModel,
|
126 |
+
tokenizer: CLIPTokenizer,
|
127 |
+
default_processing_resolution: Optional[int] = 768, # add
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
self.register_modules(
|
132 |
+
unet=unet,
|
133 |
+
vae=vae,
|
134 |
+
scheduler=scheduler,
|
135 |
+
text_encoder=text_encoder,
|
136 |
+
tokenizer=tokenizer,
|
137 |
+
)
|
138 |
+
self.register_to_config(
|
139 |
+
default_processing_resolution=default_processing_resolution,
|
140 |
+
)
|
141 |
+
|
142 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
143 |
+
self.default_processing_resolution = default_processing_resolution
|
144 |
+
self.empty_text_embedding = None
|
145 |
+
|
146 |
+
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
147 |
+
|
148 |
+
def check_inputs(
|
149 |
+
self,
|
150 |
+
image: PipelineImageInput,
|
151 |
+
processing_resolution: int,
|
152 |
+
resample_method_input: str,
|
153 |
+
resample_method_output: str,
|
154 |
+
batch_size: int,
|
155 |
+
output_type: str,
|
156 |
+
) -> int:
|
157 |
+
if processing_resolution is None:
|
158 |
+
raise ValueError(
|
159 |
+
"`processing_resolution` is not specified and could not be resolved from the model config."
|
160 |
+
)
|
161 |
+
if processing_resolution < 0:
|
162 |
+
raise ValueError(
|
163 |
+
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
|
164 |
+
"downsampled processing."
|
165 |
+
)
|
166 |
+
if processing_resolution % self.vae_scale_factor != 0:
|
167 |
+
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
|
168 |
+
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
169 |
+
raise ValueError(
|
170 |
+
"`resample_method_input` takes string values compatible with PIL library: "
|
171 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
172 |
+
)
|
173 |
+
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
174 |
+
raise ValueError(
|
175 |
+
"`resample_method_output` takes string values compatible with PIL library: "
|
176 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
177 |
+
)
|
178 |
+
if batch_size < 1:
|
179 |
+
raise ValueError("`batch_size` must be positive.")
|
180 |
+
if output_type not in ["pt", "np"]:
|
181 |
+
raise ValueError("`output_type` must be one of `pt` or `np`.")
|
182 |
+
|
183 |
+
# image checks
|
184 |
+
num_images = 0
|
185 |
+
W, H = None, None
|
186 |
+
if not isinstance(image, list):
|
187 |
+
image = [image]
|
188 |
+
for i, img in enumerate(image):
|
189 |
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
190 |
+
if img.ndim not in (2, 3, 4):
|
191 |
+
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
|
192 |
+
H_i, W_i = img.shape[-2:]
|
193 |
+
N_i = 1
|
194 |
+
if img.ndim == 4:
|
195 |
+
N_i = img.shape[0]
|
196 |
+
elif isinstance(img, Image.Image):
|
197 |
+
W_i, H_i = img.size
|
198 |
+
N_i = 1
|
199 |
+
else:
|
200 |
+
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
|
201 |
+
if W is None:
|
202 |
+
W, H = W_i, H_i
|
203 |
+
elif (W, H) != (W_i, H_i):
|
204 |
+
raise ValueError(
|
205 |
+
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
|
206 |
+
)
|
207 |
+
num_images += N_i
|
208 |
+
|
209 |
+
return num_images
|
210 |
+
|
211 |
+
def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
|
212 |
+
if not hasattr(self, "_progress_bar_config"):
|
213 |
+
self._progress_bar_config = {}
|
214 |
+
elif not isinstance(self._progress_bar_config, dict):
|
215 |
+
raise ValueError(
|
216 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
217 |
+
)
|
218 |
+
|
219 |
+
progress_bar_config = dict(**self._progress_bar_config)
|
220 |
+
progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
|
221 |
+
progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
|
222 |
+
if iterable is not None:
|
223 |
+
return tqdm(iterable, **progress_bar_config)
|
224 |
+
elif total is not None:
|
225 |
+
return tqdm(total=total, **progress_bar_config)
|
226 |
+
else:
|
227 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
228 |
+
|
229 |
+
@torch.no_grad()
|
230 |
+
def __call__(
|
231 |
+
self,
|
232 |
+
image: PipelineImageInput,
|
233 |
+
processing_resolution: Optional[int] = None,
|
234 |
+
match_input_resolution: bool = True,
|
235 |
+
resample_method_input: str = "bilinear",
|
236 |
+
resample_method_output: str = "bilinear",
|
237 |
+
batch_size: int = 1,
|
238 |
+
output_type: str = "np",
|
239 |
+
output_latent: bool = False,
|
240 |
+
return_dict: bool = True,
|
241 |
+
):
|
242 |
+
"""
|
243 |
+
Function invoked when calling the pipeline.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
|
247 |
+
`List[torch.Tensor]`: An input image or images used as an input for the depth estimation task. For
|
248 |
+
arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
|
249 |
+
by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
|
250 |
+
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
|
251 |
+
same width and height.
|
252 |
+
processing_resolution (`int`, *optional*, defaults to `None`):
|
253 |
+
Effective processing resolution. When set to `0`, matches the larger input image dimension. This
|
254 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
255 |
+
value `None` resolves to the optimal value from the model config.
|
256 |
+
match_input_resolution (`bool`, *optional*, defaults to `True`):
|
257 |
+
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
|
258 |
+
side of the output will equal to `processing_resolution`.
|
259 |
+
resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
|
260 |
+
Resampling method used to resize input images to `processing_resolution`. The accepted values are:
|
261 |
+
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
262 |
+
resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
|
263 |
+
Resampling method used to resize output predictions to match the input resolution. The accepted values
|
264 |
+
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
265 |
+
batch_size (`int`, *optional*, defaults to `1`):
|
266 |
+
Batch size; only matters passing a tensor of images.
|
267 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
268 |
+
Preferred format of the output's `prediction`. The accepted ßvalues are: `"np"` (numpy array) or `"pt"` (torch tensor).
|
269 |
+
output_latent (`bool`, *optional*, defaults to `False`):
|
270 |
+
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
|
271 |
+
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
272 |
+
`latents` argument.
|
273 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
274 |
+
Whether or not to return a [`~pipelines.marigold.E2EMarigoldDepthOutput`] instead of a plain tuple.
|
275 |
+
|
276 |
+
# add
|
277 |
+
E2E FT models are deterministic single step models involving no ensembling, i.e. E=1.
|
278 |
+
"""
|
279 |
+
|
280 |
+
# 0. Resolving variables.
|
281 |
+
device = self._execution_device
|
282 |
+
dtype = self.dtype
|
283 |
+
|
284 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
285 |
+
if processing_resolution is None:
|
286 |
+
processing_resolution = self.default_processing_resolution
|
287 |
+
|
288 |
+
# 1. Check inputs.
|
289 |
+
num_images = self.check_inputs(
|
290 |
+
image,
|
291 |
+
processing_resolution,
|
292 |
+
resample_method_input,
|
293 |
+
resample_method_output,
|
294 |
+
batch_size,
|
295 |
+
output_type,
|
296 |
+
)
|
297 |
+
|
298 |
+
# 2. Prepare empty text conditioning.
|
299 |
+
# Model invocation: self.tokenizer, self.text_encoder.
|
300 |
+
if self.empty_text_embedding is None:
|
301 |
+
prompt = ""
|
302 |
+
text_inputs = self.tokenizer(
|
303 |
+
prompt,
|
304 |
+
padding="do_not_pad",
|
305 |
+
max_length=self.tokenizer.model_max_length,
|
306 |
+
truncation=True,
|
307 |
+
return_tensors="pt",
|
308 |
+
)
|
309 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
310 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
|
311 |
+
|
312 |
+
# 3. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
|
313 |
+
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
|
314 |
+
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
|
315 |
+
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
|
316 |
+
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
|
317 |
+
# operation and leads to the most reasonable results. Using the native image resolution or any other processing
|
318 |
+
# resolution can lead to loss of either fine details or global context in the output predictions.
|
319 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
320 |
+
image, processing_resolution, resample_method_input, device, dtype
|
321 |
+
) # [N,3,PPH,PPW]
|
322 |
+
|
323 |
+
# 4. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
|
324 |
+
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
|
325 |
+
# Latents of each such predictions across all input images and all ensemble members are represented in the
|
326 |
+
# `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
|
327 |
+
# into latent space and replicated `E` times. Encoding into latent space happens in batches of size `batch_size`.
|
328 |
+
# Model invocation: self.vae.encoder.
|
329 |
+
image_latent, pred_latent = self.prepare_latents(
|
330 |
+
image, batch_size
|
331 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
332 |
+
|
333 |
+
del image
|
334 |
+
|
335 |
+
batch_empty_text_embedding = self.empty_text_embedding.to(device=device, dtype=dtype).repeat(
|
336 |
+
batch_size, 1, 1
|
337 |
+
) # [B,1024,2]
|
338 |
+
|
339 |
+
# 5. Process the denoising loop. All `N * E` latents are processed sequentially in batches of size `batch_size`.
|
340 |
+
# The unet model takes concatenated latent spaces of the input image and the predicted modality as an input, and
|
341 |
+
# outputs noise for the predicted modality's latent space.
|
342 |
+
# Model invocation: self.unet.
|
343 |
+
pred_latents = []
|
344 |
+
|
345 |
+
for i in self.progress_bar(
|
346 |
+
range(0, num_images, batch_size), leave=True, desc="E2E FT predictions..."
|
347 |
+
):
|
348 |
+
batch_image_latent = image_latent[i : i + batch_size] # [B,4,h,w]
|
349 |
+
batch_pred_latent = pred_latent[i : i + batch_size] # [B,4,h,w]
|
350 |
+
effective_batch_size = batch_image_latent.shape[0]
|
351 |
+
text = batch_empty_text_embedding[:effective_batch_size] # [B,2,1024]
|
352 |
+
|
353 |
+
# add
|
354 |
+
# Single step inference for E2E FT models
|
355 |
+
self.scheduler.set_timesteps(1, device=device)
|
356 |
+
for t in self.progress_bar(self.scheduler.timesteps, leave=False, desc="Diffusion steps..."):
|
357 |
+
batch_latent = torch.cat([batch_image_latent, batch_pred_latent], dim=1) # [B,8,h,w]
|
358 |
+
noise = self.unet(batch_latent, t, encoder_hidden_states=text, return_dict=False)[0] # [B,4,h,w]
|
359 |
+
batch_pred_latent = self.scheduler.step(
|
360 |
+
noise, t, batch_pred_latent
|
361 |
+
).pred_original_sample # [B,4,h,w], # add
|
362 |
+
# directly take pred_original_sample rather than prev_sample
|
363 |
+
|
364 |
+
pred_latents.append(batch_pred_latent)
|
365 |
+
|
366 |
+
pred_latent = torch.cat(pred_latents, dim=0) # [N*E,4,h,w]
|
367 |
+
|
368 |
+
del (
|
369 |
+
pred_latents,
|
370 |
+
image_latent,
|
371 |
+
batch_empty_text_embedding,
|
372 |
+
batch_image_latent,
|
373 |
+
batch_pred_latent,
|
374 |
+
text,
|
375 |
+
batch_latent,
|
376 |
+
noise,
|
377 |
+
)
|
378 |
+
|
379 |
+
# 6. Decode predictions from latent into pixel space. The resulting `N * E` predictions have shape `(PPH, PPW)`,
|
380 |
+
# which requires slight postprocessing. Decoding into pixel space happens in batches of size `batch_size`.
|
381 |
+
# Model invocation: self.vae.decoder.
|
382 |
+
prediction = torch.cat(
|
383 |
+
[
|
384 |
+
self.decode_prediction(pred_latent[i : i + batch_size])
|
385 |
+
for i in range(0, pred_latent.shape[0], batch_size)
|
386 |
+
],
|
387 |
+
dim=0,
|
388 |
+
) # [N*E,1,PPH,PPW]
|
389 |
+
|
390 |
+
if not output_latent:
|
391 |
+
pred_latent = None
|
392 |
+
|
393 |
+
# 7. Remove padding. The output shape is (PH, PW).
|
394 |
+
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E,1,PH,PW]
|
395 |
+
|
396 |
+
# 9. If `match_input_resolution` is set, the output prediction are upsampled to match the
|
397 |
+
# input resolution `(H, W)`. This step may introduce upsampling artifacts, and therefore can be disabled.
|
398 |
+
# Depending on the downstream use-case, upsampling can be also chosen based on the tolerated artifacts by
|
399 |
+
# setting the `resample_method_output` parameter (e.g., to `"nearest"`).
|
400 |
+
if match_input_resolution:
|
401 |
+
prediction = self.image_processor.resize_antialias(
|
402 |
+
prediction, original_resolution, resample_method_output, is_aa=False
|
403 |
+
) # [N,1,H,W]
|
404 |
+
|
405 |
+
# 10. Prepare the final outputs.
|
406 |
+
if output_type == "np":
|
407 |
+
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,1]
|
408 |
+
|
409 |
+
# 11. Offload all models
|
410 |
+
self.maybe_free_model_hooks()
|
411 |
+
|
412 |
+
if not return_dict:
|
413 |
+
return (prediction, pred_latent)
|
414 |
+
|
415 |
+
return E2EMarigoldDepthOutput(
|
416 |
+
prediction=prediction,
|
417 |
+
latent=pred_latent,
|
418 |
+
)
|
419 |
+
|
420 |
+
def prepare_latents(
|
421 |
+
self,
|
422 |
+
image: torch.Tensor,
|
423 |
+
batch_size: int,
|
424 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
425 |
+
def retrieve_latents(encoder_output):
|
426 |
+
if hasattr(encoder_output, "latent_dist"):
|
427 |
+
return encoder_output.latent_dist.mode()
|
428 |
+
elif hasattr(encoder_output, "latents"):
|
429 |
+
return encoder_output.latents
|
430 |
+
else:
|
431 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
432 |
+
|
433 |
+
image_latent = torch.cat(
|
434 |
+
[
|
435 |
+
retrieve_latents(self.vae.encode(image[i : i + batch_size]))
|
436 |
+
for i in range(0, image.shape[0], batch_size)
|
437 |
+
],
|
438 |
+
dim=0,
|
439 |
+
) # [N,4,h,w]
|
440 |
+
image_latent = image_latent * self.vae.config.scaling_factor # [N*E,4,h,w]
|
441 |
+
|
442 |
+
# add
|
443 |
+
# provide zeros as noised latent
|
444 |
+
pred_latent = zeros_tensor(
|
445 |
+
image_latent.shape,
|
446 |
+
device=image_latent.device,
|
447 |
+
dtype=image_latent.dtype,
|
448 |
+
) # [N*E,4,h,w]
|
449 |
+
|
450 |
+
return image_latent, pred_latent
|
451 |
+
|
452 |
+
def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
|
453 |
+
if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
|
454 |
+
raise ValueError(
|
455 |
+
f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
|
456 |
+
)
|
457 |
+
|
458 |
+
prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] # [B,3,H,W]
|
459 |
+
|
460 |
+
prediction = prediction.mean(dim=1, keepdim=True) # [B,1,H,W]
|
461 |
+
prediction = torch.clip(prediction, -1.0, 1.0) # [B,1,H,W]
|
462 |
+
|
463 |
+
# add
|
464 |
+
prediction = (prediction - prediction.min()) / (prediction.max() - prediction.min())
|
465 |
+
|
466 |
+
return prediction # [B,1,H,W]
|