RFdiffusion / run_inference.py
GlandVergil's picture
Upload 686 files
3cdaa7d verified
#!/usr/bin/env python
"""
Inference script.
To run with base.yaml as the config,
> python run_inference.py
To specify a different config,
> python run_inference.py --config-name symmetry
where symmetry can be the filename of any other config (without .yaml extension)
See https://hydra.cc/docs/advanced/hydra-command-line-flags/ for more options.
"""
import re
import os, time, pickle
import torch
from omegaconf import OmegaConf
import hydra
import logging
from rfdiffusion.util import writepdb_multi, writepdb
from rfdiffusion.inference import utils as iu
from hydra.core.hydra_config import HydraConfig
import numpy as np
import random
import glob
def make_deterministic(seed=0):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
@hydra.main(version_base=None, config_path="../config/inference", config_name="base")
def main(conf: HydraConfig) -> None:
log = logging.getLogger(__name__)
if conf.inference.deterministic:
make_deterministic()
# Check for available GPU and print result of check
if torch.cuda.is_available():
device_name = torch.cuda.get_device_name(torch.cuda.current_device())
log.info(f"Found GPU with device_name {device_name}. Will run RFdiffusion on {device_name}")
else:
log.info("////////////////////////////////////////////////")
log.info("///// NO GPU DETECTED! Falling back to CPU /////")
log.info("////////////////////////////////////////////////")
# Initialize sampler and target/contig.
sampler = iu.sampler_selector(conf)
# Loop over number of designs to sample.
design_startnum = sampler.inf_conf.design_startnum
if sampler.inf_conf.design_startnum == -1:
existing = glob.glob(sampler.inf_conf.output_prefix + "*.pdb")
indices = [-1]
for e in existing:
print(e)
m = re.match(".*_(\d+)\.pdb$", e)
print(m)
if not m:
continue
m = m.groups()[0]
indices.append(int(m))
design_startnum = max(indices) + 1
for i_des in range(design_startnum, design_startnum + sampler.inf_conf.num_designs):
if conf.inference.deterministic:
make_deterministic(i_des)
start_time = time.time()
out_prefix = f"{sampler.inf_conf.output_prefix}_{i_des}"
log.info(f"Making design {out_prefix}")
if sampler.inf_conf.cautious and os.path.exists(out_prefix + ".pdb"):
log.info(
f"(cautious mode) Skipping this design because {out_prefix}.pdb already exists."
)
continue
x_init, seq_init = sampler.sample_init()
denoised_xyz_stack = []
px0_xyz_stack = []
seq_stack = []
plddt_stack = []
x_t = torch.clone(x_init)
seq_t = torch.clone(seq_init)
# Loop over number of reverse diffusion time steps.
for t in range(int(sampler.t_step_input), sampler.inf_conf.final_step - 1, -1):
px0, x_t, seq_t, plddt = sampler.sample_step(
t=t, x_t=x_t, seq_init=seq_t, final_step=sampler.inf_conf.final_step
)
px0_xyz_stack.append(px0)
denoised_xyz_stack.append(x_t)
seq_stack.append(seq_t)
plddt_stack.append(plddt[0]) # remove singleton leading dimension
# Flip order for better visualization in pymol
denoised_xyz_stack = torch.stack(denoised_xyz_stack)
denoised_xyz_stack = torch.flip(
denoised_xyz_stack,
[
0,
],
)
px0_xyz_stack = torch.stack(px0_xyz_stack)
px0_xyz_stack = torch.flip(
px0_xyz_stack,
[
0,
],
)
# For logging -- don't flip
plddt_stack = torch.stack(plddt_stack)
# Save outputs
os.makedirs(os.path.dirname(out_prefix), exist_ok=True)
final_seq = seq_stack[-1]
# Output glycines, except for motif region
final_seq = torch.where(
torch.argmax(seq_init, dim=-1) == 21, 7, torch.argmax(seq_init, dim=-1)
) # 7 is glycine
bfacts = torch.ones_like(final_seq.squeeze())
# make bfact=0 for diffused coordinates
bfacts[torch.where(torch.argmax(seq_init, dim=-1) == 21, True, False)] = 0
# pX0 last step
out = f"{out_prefix}.pdb"
# Now don't output sidechains
writepdb(
out,
denoised_xyz_stack[0, :, :4],
final_seq,
sampler.binderlen,
chain_idx=sampler.chain_idx,
bfacts=bfacts,
)
# run metadata
trb = dict(
config=OmegaConf.to_container(sampler._conf, resolve=True),
plddt=plddt_stack.cpu().numpy(),
device=torch.cuda.get_device_name(torch.cuda.current_device())
if torch.cuda.is_available()
else "CPU",
time=time.time() - start_time,
)
if hasattr(sampler, "contig_map"):
for key, value in sampler.contig_map.get_mappings().items():
trb[key] = value
with open(f"{out_prefix}.trb", "wb") as f_out:
pickle.dump(trb, f_out)
if sampler.inf_conf.write_trajectory:
# trajectory pdbs
traj_prefix = (
os.path.dirname(out_prefix) + "/traj/" + os.path.basename(out_prefix)
)
os.makedirs(os.path.dirname(traj_prefix), exist_ok=True)
out = f"{traj_prefix}_Xt-1_traj.pdb"
writepdb_multi(
out,
denoised_xyz_stack,
bfacts,
final_seq.squeeze(),
use_hydrogens=False,
backbone_only=False,
chain_ids=sampler.chain_idx,
)
out = f"{traj_prefix}_pX0_traj.pdb"
writepdb_multi(
out,
px0_xyz_stack,
bfacts,
final_seq.squeeze(),
use_hydrogens=False,
backbone_only=False,
chain_ids=sampler.chain_idx,
)
log.info(f"Finished design in {(time.time()-start_time)/60:.2f} minutes")
if __name__ == "__main__":
main()