--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.30460448642266824 --- # whisper-tiny-finetuned-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Wer Ortho: 0.3029 - Wer: 0.3046 ## Model description I have made it for audio corse Unit 5 Hands on Here is some additional info https://outleys.site/en/development/AI/hugface-unit-5-excercise-guide/ ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 50 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 1.1444 | 0.8850 | 100 | 0.4740 | 0.3411 | 0.3388 | | 0.2788 | 1.7699 | 200 | 0.4633 | 0.2986 | 0.3017 | | 0.1377 | 2.6549 | 300 | 0.4969 | 0.3048 | 0.3052 | | 0.0561 | 3.5398 | 400 | 0.5145 | 0.3017 | 0.3034 | | 0.0177 | 4.4248 | 500 | 0.5241 | 0.3091 | 0.3117 | | 0.01 | 5.3097 | 600 | 0.5352 | 0.3029 | 0.3046 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3