File size: 35,219 Bytes
bb13925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training a CLIP like dual encoder models using text and vision encoders in the library.

The script can be used to train CLIP like models for languages other than english by using
a text encoder pre-trained in the desired language. Currently this script support the following vision
and text models:
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
"""

import json
import logging
import os
import sys
import time
import numpy as np
from dataclasses import dataclass, field
from pathlib import Path
from typing import Callable, Optional
import shutil
import gc
import pyarrow as pa

try:
    from dotenv import load_dotenv
    load_dotenv("../.env")
except:
    print("Couldn't find ../.env file")

import wandb
from transformers.file_utils import PushToHubMixin


import torch
from torchvision.datasets import VisionDataset
from torchvision.io import ImageReadMode, read_image
from torchvision.transforms import (
    CenterCrop,
    ConvertImageDtype,
    Normalize,
    Resize,
    ColorJitter,
    RandomHorizontalFlip,
    RandomRotation,
    RandomCrop,
    RandomAffine,
    RandomPerspective,
    RandomAutocontrast,
    RandomEqualize,
)
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm

import jax
import jax.numpy as jnp
import optax
import transformers
from flax import jax_utils
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, shard, shard_prng_key
from modeling_hybrid_clip import FlaxHybridCLIP
from configuration_hybrid_clip import HybridCLIPConfig
from transformers import (
    AutoTokenizer,
    HfArgumentParser,
    TrainingArguments,
    is_tensorboard_available,
    set_seed,
)
from numpy.random import default_rng
from flax.serialization import to_bytes, from_bytes

logger = logging.getLogger(__name__)

def mb_item(x):
    return x.item() if hasattr(x, "item") else x

# checkpoint functions
def save_model_checkpoint(
    model,
    save_dir,
    state,
    logger,
    organization,
    with_opt: bool = False,
    push_to_hub: bool = False,
    overwrite=False,
    **kwargs,
):
    state = jax_utils.unreplicate(state)
    #params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
    logger.info(f"Saving Checkpoint in {save_dir}")
    ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
    if os.path.exists(ckpt_save_dir) and not overwrite:
        logger.info("checkpoint exists, skipping overwrite")
    else:
        model.save_pretrained(
            ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
        )
        if with_opt:
            with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
                f.write(to_bytes(state.opt_state))
            with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
                json.dump({"step": state.step.item()}, f)

        logger.info("checkpoint saved")

        if push_to_hub:
            repo_name = Path(save_dir).name
            repo_url = PushToHubMixin._get_repo_url_from_name(
                repo_name, organization=organization, private=False, use_auth_token=True
            )
            repo = PushToHubMixin._create_or_get_repo(
                save_dir,
                repo_url=repo_url,
                organization=organization,
                use_auth_token=True,
            )
            commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
            url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
            logger.info(f"Model pushed to the hub in this commit: {url}")


def restore_model_checkpoint(save_dir, state, logger):
    logger.info(f"Restoring checkpoint from {save_dir}.")
    with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
        params = from_bytes(state.params, f.read())

    with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
        opt_state = from_bytes(state.opt_state, f.read())

    with open(os.path.join(save_dir, "training_state.json"), "r") as f:
        training_state = json.load(f)
    step = training_state["step"]

    logger.info("checkpoint restored")
    # return state.replace(step=step, params=params, opt_state=opt_state), step
    return params, opt_state, step


def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
    "Removes older checkpoints so that `save_total_limit` checkpoints are kept"
    # TODO: what to remove is decided using step number only, we might want to improve that
    ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
    # sort checkpoints by step
    ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
    ckpts_to_delete = ckpts_sorted[:-save_total_limit]
    for ckpt in ckpts_to_delete:
        logger.info(
            f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
        )
        shutil.rmtree(ckpt)

# Cache the result
has_tensorboard = is_tensorboard_available()
if has_tensorboard:
    try:
        from flax.metrics.tensorboard import SummaryWriter
    except ImportError as ie:
        has_tensorboard = False
        print(
            f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
        )

else:
    print(
        "Unable to display metrics through TensorBoard because the package is not installed: "
        "Please run pip install tensorboard to enable."
    )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    text_model_name_or_path: str = field(
        metadata={
            "help": "The text model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    vision_model_name_or_path: str = field(
        metadata={
            "help": "The vision model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    from_pt: bool = field(
        default=True,
        metadata={
            "help": "whether to load the text and vision model using PyTorch checkpoints."
        },
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained config name or path if not the same as model_name"
        },
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained tokenizer name or path if not the same as model_name"
        },
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={
            "help": "Where do you want to store the pretrained models downloaded from s3"
        },
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={
            "help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: Optional[str] = field(
        default=None, metadata={"help": "The data directory containing input files."}
    )
    train_file: Optional[str] = field(
        default=None,
        metadata={"help": "The input training data file (a jsonlines file)."},
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
    )
    max_seq_length: Optional[int] = field(
        default=72,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )

    def __post_init__(self):
        if self.train_file is None and self.validation_file is None:
            raise ValueError(
                "Need either a dataset name or a training/validation file."
            )
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension == "json", "`train_file` should be a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension == "json", "`validation_file` should be a json file."


# We use torchvision for faster image pre-processing.
# We need to ensure faster processing speed as it can become a bottleneck on TPU
class Transform(torch.nn.Module):
    def __init__(self, image_size, augment=False):
        super().__init__()
        if not augment:
            self.transforms = torch.nn.Sequential(
                Resize([image_size], interpolation=InterpolationMode.BICUBIC),
                CenterCrop(image_size),
                ConvertImageDtype(torch.float),
                Normalize(
                    (0.48145466, 0.4578275, 0.40821073),
                    (0.26862954, 0.26130258, 0.27577711),
                ),
            )
        else:
            self.transforms = torch.nn.Sequential(
                Resize([image_size], interpolation=InterpolationMode.BICUBIC),
                # CenterCrop(image_size),
                RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
                ColorJitter(hue=0.1),
                RandomHorizontalFlip(),
                # RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
                RandomAffine(
                    degrees=15,
                    translate=(0.1, 0.1),
                    scale=(0.8, 1.2),
                    shear=(-15, 15, -15, 15),
                    interpolation=InterpolationMode.BILINEAR,
                    fill=127,
                ),
                RandomPerspective(
                    distortion_scale=0.3,
                    p=0.3,
                    interpolation=InterpolationMode.BILINEAR,
                    fill=127,
                ),
                RandomAutocontrast(p=0.3),
                RandomEqualize(p=0.3),
                ConvertImageDtype(torch.float),
                Normalize(
                    (0.48145466, 0.4578275, 0.40821073),
                    (0.26862954, 0.26130258, 0.27577711),
                ),
            )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            x = self.transforms(x)
        return x


class ImageTextDataset(VisionDataset):
    """
    Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.

    Args:
        root: (string): The root path where the dataset is stored
        file_path: (string): Path to the file containing the image_paths and associated captions.
            The expected format is jsonlines where each line is a json object containing to keys.
            `image_path`: The path to the image.
            `captions`: An `array` of captions.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.ToTensor``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
            and returns a transformed version.
    """

    def __init__(
        self,
        root: str,
        file_path: str,
        captions_per_image=-1,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        transforms: Optional[Callable] = None,
        seed=42,
    ):
        super().__init__(root, transforms, transform, target_transform)
        with open(file_path, "r") as f:
            examples = [json.loads(line) for line in f.readlines()]
            #examples = pa.array([json.loads(line) for line in f.readlines()])

        self.rand_generator = default_rng(seed)

        self.captions = []
        self.image_paths = []

        for example in examples:
            if captions_per_image <= -1:
                self.captions.append(example["captions"])
            elif captions_per_image > 0:
                self.captions.append(example["captions"][:captions_per_image])
            else:
                raise ValueError("captions per image cannot be zero")

            #self.image_paths.append(str(example["image_path"]))
            self.image_paths.append(example["image_path"])
        
        self.captions = self.captions
        self.image_paths = self.image_paths

    def _load_image(self, idx: int):
        path = self.image_paths[idx]
        im = read_image(path, mode=ImageReadMode.RGB)
        return im

    def _load_target(self, idx):
        return str(self.rand_generator.choice(self.captions[idx]))
        # if len(self.captions[idx]) > 1:
        #     caption_idx = np.random.randint(0, len(self.captions[idx]))
        # else:
        #     caption_idx = 0
        # return self.captions[idx][caption_idx]

    def __getitem__(self, index: int):
        image = self._load_image(index)
        target = self._load_target(index)

        if self.transforms is not None:
            image, target = self.transforms(image, target)

        return image, target

    def __len__(self) -> int:
        return len(self.captions)


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray

    def replicate(self):
        return jax_utils.replicate(self).replace(
            dropout_rng=shard_prng_key(self.dropout_rng)
        )

def write_train_metric(summary_writer, train_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)


def write_eval_metric(summary_writer, eval_metrics, step):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def create_learning_rate_fn(
    train_ds_size: int,
    train_batch_size: int,
    num_train_epochs: int,
    num_warmup_steps: int,
    learning_rate: float,
    linear=False,
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    if linear:
        warmup_fn = optax.linear_schedule(
            init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
        )
        decay_fn = optax.linear_schedule(
            init_value=learning_rate,
            end_value=0,
            transition_steps=num_train_steps - num_warmup_steps,
        )
    else:
        warmup_fn = optax.linear_schedule(
            init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
        )
        decay_fn = optax.cosine_decay_schedule(
            init_value=learning_rate,
            decay_steps=num_train_steps - num_warmup_steps,
            alpha=0.0,
        )
    schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
    )
    return schedule_fn


def main():
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments)
    )
    parser.add_argument("--log_wandb", action="store_true")
    parser.add_argument("--freeze_backbones", action="store_true")
    parser.add_argument("--exp_name", type=str, default=None)
    parser.add_argument("--run_from_checkpoint", type=str, default=None)

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1])
        )
    else:
        (
            model_args,
            data_args,
            training_args,
            args,
        ) = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.text_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.text_model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )


    if args.run_from_checkpoint is not None:
        with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
            config_dict = json.load(fp)
        config_dict["vision_config"]["model_type"] = "clip"
        config = HybridCLIPConfig(**config_dict)
        model = FlaxHybridCLIP.from_pretrained(
            args.run_from_checkpoint,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            config=config,
            freeze_backbones=args.freeze_backbones
        )
    else:

        model = FlaxHybridCLIP.from_text_vision_pretrained(
            model_args.text_model_name_or_path,
            model_args.vision_model_name_or_path,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            text_from_pt=False,
            vision_from_pt=model_args.from_pt,
            freeze_backbones=args.freeze_backbones
        )
    config = model.config
    # set seed for torch dataloaders
    set_seed(training_args.seed)

    # Initialize torchvision transforms and jit them for faster processing
    train_preprocess = Transform(config.vision_config.image_size, augment=True)
    train_preprocess = torch.jit.script(train_preprocess)

    val_preprocess = Transform(config.vision_config.image_size)
    val_preprocess = torch.jit.script(val_preprocess)

    # Initialize the image-text dataset
    train_dataset = ImageTextDataset(
        data_args.data_dir,
        data_args.train_file,
        captions_per_image=-1,
        transform=train_preprocess,
        seed=training_args.seed,
    )

    eval_dataset = ImageTextDataset(
        data_args.data_dir,
        data_args.validation_file,
        captions_per_image=-1,
        transform=val_preprocess,
        seed=training_args.seed,
    )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = (
        int(training_args.per_device_train_batch_size) * jax.device_count()
    )
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Use collate function to tokenizer the text and convert the processed images to numpy
    def collate_fn(examples):
        pixel_values = (
            torch.stack([example[0] for example in examples])
            .permute(0, 2, 3, 1)
            .numpy()
        )
        captions = [example[1] for example in examples]
        inputs = tokenizer(
            captions,
            max_length=data_args.max_seq_length,
            padding="max_length",
            truncation=True,
            return_tensors="np",
        )

        batch = {
            "pixel_values": pixel_values,
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"],
        }

        return batch

    # Create data loaders
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=data_args.preprocessing_num_workers,
        #persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        num_workers=data_args.preprocessing_num_workers,
        #persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    # Enable tensorboard only on the master node
    if has_tensorboard and jax.process_index() == 0:
        summary_writer = SummaryWriter(
            log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
        )

    # Enable wandb
    if jax.process_index() == 0 and args.log_wandb:
        try:
            wandb.init(
                name=args.exp_name,
                entity="galuh", 
                project="indoclip",
                sync_tensorboard=True
            )
            wandb.config.update(training_args)
            wandb.config.update(model_args)
            wandb.config.update(data_args)
        except ImportError as e:
            print(e)

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Create learning rate schedule
    if training_args.warmup_steps:
        warmup_steps = training_args.warmup_steps
    elif training_args.warmup_ratio:
        warmup_steps = int(training_args.warmup_ratio * total_train_steps)
    else:
        raise RuntimeError(
            "You have to specify either the warmup_steps or warmup_ratio CLI parameter"
        )

    decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        warmup_steps,
        training_args.learning_rate,
        linear=False,  # set False to activate cosine annealing
    )

    # create adam optimizer
    #     optimizer = optax.adamw(
    #         learning_rate=decay_lr_schedule_fn,
    #         b1=training_args.adam_beta1,
    #         b2=training_args.adam_beta2,
    #         eps=training_args.adam_epsilon,
    #         weight_decay=training_args.weight_decay,
    #     )

    optimizer = optax.chain(
        optax.adaptive_grad_clip(0.01, eps=0.001),
        optax.scale_by_belief(),
        optax.scale_by_schedule(decay_lr_schedule_fn),
        optax.scale(-1.0),
    )

    '''optimizer = optax.adafactor(
            learning_rate=decay_lr_schedule_fn,
        )'''

    # Setup train state
    state = TrainState.create(
        apply_fn=model.__call__,
        params=model.params,
        tx=optimizer,
        dropout_rng=dropout_rng,
    )

    def cross_entropy(logits, axis):
        logprobs = jax.nn.log_softmax(logits, axis=axis)
        nll = jnp.diag(logprobs)
        ce = -jnp.mean(nll)
        return ce

    def clip_loss(similarity):
        loss = (
            cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
        ) / 2
        return loss

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            logits = state.apply_fn(
                **batch, params=params, dropout_rng=dropout_rng, train=True
            )[0]
            loss = clip_loss(logits)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {
            "loss": loss,
            "learning_rate": decay_lr_schedule_fn(state.step),
        }
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        logits = model(**batch, params=params, train=False)[0]
        loss = clip_loss(logits)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  TPU = {jax.device_count()}")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")
    logger.info(f"  Total warmup steps = {warmup_steps}")

    train_time = 0
    # Create sampling rng
    rng, input_rng = jax.random.split(rng)

    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        num_train_samples = len(train_dataset)

        steps_per_epoch = len(train_dataset) // train_batch_size
        train_step_progress_bar = tqdm(
            total=steps_per_epoch, desc="Training...", position=1, leave=False
        )
        # train
        for step, batch in enumerate(train_loader):
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

            cur_step = epoch * (num_train_samples // train_batch_size) + step + 1

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                train_time += time.time() - train_start
                train_metric = unreplicate(train_metric)

                # Save tensorboard metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(
                        summary_writer, train_metrics, train_time, cur_step
                    )

                # Save wandb metrics
                if args.log_wandb and jax.process_index() == 0:
                    #_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
                    #_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
                    _metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
                    wandb.log({"train_step":cur_step, **_metrics}, commit=True)

                epochs.write(
                    f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
                )

                logging.info("Emptying train metrics")
                
                del train_metric
                del train_metrics
                train_metrics = []

                gc.collect()
                torch.cuda.empty_cache()

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(eval_dataset)
                eval_metrics = []
                eval_steps = len(eval_dataset) // eval_batch_size
                eval_step_progress_bar = tqdm(
                    total=eval_steps, desc="Evaluating...", position=2, leave=False
                )
                for batch in eval_loader:
                    # Model forward
                    batch = shard(batch)
                    metrics = p_eval_step(state.params, batch)
                    eval_metrics.append(metrics)

                    eval_step_progress_bar.update(1)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
                eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                # Print metrics and update progress bar
                desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
                epochs.write(desc)
                epochs.desc = desc

                # Save tfboard eval
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

                # Save eval wandb
                if args.log_wandb and jax.process_index() == 0:
                    #_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
                    _metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
                    wandb.log({"eval_step":cur_step, **_metrics})

                logging.info("Emptying eval metrics")
                del eval_metrics

                eval_metrics = []

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    # params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
                    # model.save_pretrained(
                    #     training_args.output_dir,
                    #     params=params,
                    #     push_to_hub=training_args.push_to_hub,
                    #     commit_message=f"Saving weights and logs of step {cur_step}",
                    # )
                    save_model_checkpoint(
                        model,
                        training_args.output_dir,
                        state,
                        logger,
                        training_args.push_to_hub_organization,
                        with_opt=True,
                        push_to_hub=training_args.push_to_hub,
                        overwrite=True,
                    )
                    # if model_args.save_optimizer:
                    #     # this saves full state including optimizer
                    #     save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
                    if training_args.save_total_limit is not None:
                        rotate_checkpoints(
                            training_args.output_dir,
                            training_args.save_total_limit,
                            logger,
                        )

        train_step_progress_bar.close() #check

        '''# save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(unreplicate(state.params))
            model.save_pretrained(
                training_args.output_dir + f"/{epoch+1}/",
                params=params,
                push_to_hub=training_args.push_to_hub,
                commit_message=f"Saving weights and logs of epoch {epoch+1}",
            )'''

    # save model after training is over
    params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
    model.save_pretrained(
        training_args.output_dir,
        params=params,
        push_to_hub=training_args.push_to_hub,
        commit_message="Add final model",
    )


if __name__ == "__main__":
    main()