Gabriel commited on
Commit
a124fd9
1 Parent(s): b1317f3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: bart-base-cnn-xsum-swe
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bart-base-cnn-xsum-swe
16
+
17
+ This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.1895
20
+ - Rouge1: 31.1693
21
+ - Rouge2: 12.7388
22
+ - Rougel: 25.7655
23
+ - Rougelsum: 25.7862
24
+ - Gen Len: 19.7733
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 8
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
59
+ | 2.3079 | 1.0 | 6375 | 2.1998 | 29.7845 | 11.125 | 24.3181 | 24.3562 | 19.7119 |
60
+ | 2.064 | 2.0 | 12750 | 2.1245 | 30.4641 | 11.7383 | 25.0254 | 25.0633 | 19.653 |
61
+ | 1.8647 | 3.0 | 19125 | 2.1005 | 30.8903 | 12.2265 | 25.3996 | 25.4252 | 19.7457 |
62
+ | 1.7098 | 4.0 | 25500 | 2.1073 | 31.1173 | 12.4124 | 25.6553 | 25.6913 | 19.7546 |
63
+ | 1.5761 | 5.0 | 31875 | 2.1227 | 30.9586 | 12.4907 | 25.5474 | 25.5745 | 19.7675 |
64
+ | 1.4618 | 6.0 | 38250 | 2.1484 | 31.115 | 12.6546 | 25.684 | 25.7151 | 19.7456 |
65
+ | 1.3643 | 7.0 | 44625 | 2.1705 | 31.2225 | 12.8069 | 25.7901 | 25.8154 | 19.7842 |
66
+ | 1.2944 | 8.0 | 51000 | 2.1895 | 31.1693 | 12.7388 | 25.7655 | 25.7862 | 19.7733 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.22.1
72
+ - Pytorch 1.12.1+cu113
73
+ - Datasets 2.5.1
74
+ - Tokenizers 0.12.1