GRMenon commited on
Commit
9ba106f
1 Parent(s): d45b5ca

End of training

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
7
+ model-index:
8
+ - name: mental-health-mistral-7b-instructv0.2-finetuned-V2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mental-health-mistral-7b-instructv0.2-finetuned-V2
16
+
17
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6432
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0002
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - lr_scheduler_warmup_ratio: 0.05
45
+ - num_epochs: 3
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 1.4325 | 1.0 | 352 | 0.9064 |
53
+ | 1.2608 | 2.0 | 704 | 0.6956 |
54
+ | 1.1845 | 3.0 | 1056 | 0.6432 |
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - PEFT 0.7.1
60
+ - Transformers 4.36.1
61
+ - Pytorch 2.0.0
62
+ - Datasets 2.1.0
63
+ - Tokenizers 0.15.0