GIZ
/

ppsingh commited on
Commit
5b99b4e
1 Parent(s): b4109eb

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Unconditional Reduction The level of reduction planned unconditionally is
12
+ expected to be up to 35% by 2030 as compared to the Business As Usual (BAU) scenario,
13
+ taking 2005 as the reference year. Conditional Reduction In a conditional mitigation
14
+ scenario Angola plans to reduce further its emissions. Therefore, the mitigation
15
+ options identified in this scenario are expected to reduce an additional 15% below
16
+ BAU emission levels by 2030.
17
+ - text: Measure 300 MW total installed biomass power capacity in the country by Sector
18
+ Energy GHG mitigation target 84 ktCO2e on average per year between 2020 and 2030
19
+ Monitoring procedures Newly added biomass capacity will be monitored on an annual
20
+ basis by the Department of Climate Change of the Ministry of Natural Resources
21
+ and Environment using data from the Ministry of Energy and Mines Comments - Installed
22
+ capacity as of 2019 is around 40MW Measure 30% Electric Vehicles penetration
23
+ for 2-wheelers and passengers cars in national vehicles mix Sector Transport
24
+ GHG mitigation target 30 ktCO2e on average per year between 2020 and 2030 Monitoring
25
+ procedures Share of Electric Vehicles in national vehicle mix will be monitored
26
+ on an annual basis by the Department of Climate Change of the Ministry of Natural
27
+ Resources and Environment using data from the Ministry of Public Works and Transport.
28
+ - text: � Australia adopts a target of net zero emissions by 2050. This is an economy-wide
29
+ target, covering all sectors and gases included in Australia’s national inventory.
30
+ � In order to achieve net zero by 2050, Australia commits to seven low emissions
31
+ technology stretch goals - ambitious but realistic goals to bring priority low
32
+ emissions technologies to economic parity with existing mature technologies.
33
+ - text: 'The GoP has taken a series of major initiatives as outlined in chapters 4
34
+ and 5. Hence, Pakistan intends to set a cumulative ambitious conditional target
35
+ of overall 50% reduction of its projected emissions by 2030, with 15% from the
36
+ country’s own resources and 35% subject to provision of international grant finance
37
+ that would require USD 101 billion just for energy transition. 7.1 HIGH PRIORITY
38
+ ACTIONS Addressing the Global Climate Summit at the United Nations in December
39
+ 2020, the Prime Minister of Pakistan made an announcement to reduce future GHG
40
+ emissions on a high priority basis if international financial and technical resources
41
+ were made available: MITIGATION: 1.'
42
+ - text: This document enfolds Iceland’s first communication on its long-term strategy
43
+ (LTS), to be updated when further analysis and policy documents are published
44
+ on the matter. Iceland is committed to reducing its overall greenhouse gas emissions
45
+ and reaching climate neutrality no later than 2040 and become fossil fuel free
46
+ in 2050, which should set Iceland on a path to net negative emissions.
47
+ pipeline_tag: text-classification
48
+ inference: false
49
+ co2_eq_emissions:
50
+ emissions: 268.4261122496047
51
+ source: codecarbon
52
+ training_type: fine-tuning
53
+ on_cloud: false
54
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.20GHz
55
+ ram_total_size: 12.674789428710938
56
+ hours_used: 2.03
57
+ hardware_used: 1 x Tesla V100-SXM2-16GB
58
+ base_model: BAAI/bge-base-en-v1.5
59
+ ---
60
+
61
+ # SetFit with BAAI/bge-base-en-v1.5
62
+
63
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
64
+
65
+ The model has been trained using an efficient few-shot learning technique that involves:
66
+
67
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
68
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
69
+
70
+ ## Model Details
71
+
72
+ ### Model Description
73
+ - **Model Type:** SetFit
74
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
75
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
76
+ - **Maximum Sequence Length:** 512 tokens
77
+ - **Number of Classes:** 3 classes
78
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
79
+ <!-- - **Language:** Unknown -->
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
85
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
86
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ First install the SetFit library:
93
+
94
+ ```bash
95
+ pip install setfit
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+
100
+ ```python
101
+ from setfit import SetFitModel
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SetFitModel.from_pretrained("ppsingh/SUBTARGET_multilabel_bge")
105
+ # Run inference
106
+ preds = model("This document enfolds Iceland’s first communication on its long-term strategy (LTS), to be updated when further analysis and policy documents are published on the matter. Iceland is committed to reducing its overall greenhouse gas emissions and reaching climate neutrality no later than 2040 and become fossil fuel free in 2050, which should set Iceland on a path to net negative emissions.")
107
+ ```
108
+
109
+ <!--
110
+ ### Downstream Use
111
+
112
+ *List how someone could finetune this model on their own dataset.*
113
+ -->
114
+
115
+ <!--
116
+ ### Out-of-Scope Use
117
+
118
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
119
+ -->
120
+
121
+ <!--
122
+ ## Bias, Risks and Limitations
123
+
124
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
125
+ -->
126
+
127
+ <!--
128
+ ### Recommendations
129
+
130
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
131
+ -->
132
+
133
+ ## Training Details
134
+
135
+ ### Training Set Metrics
136
+ | Training set | Min | Median | Max |
137
+ |:-------------|:----|:--------|:----|
138
+ | Word count | 19 | 78.5467 | 173 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (8, 2)
142
+ - num_epochs: (1, 0)
143
+ - max_steps: -1
144
+ - sampling_strategy: undersampling
145
+ - body_learning_rate: (6.86e-06, 1e-05)
146
+ - head_learning_rate: 0.01
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.01
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:------:|:-----:|:-------------:|:---------------:|
160
+ | 0.0000 | 1 | 0.2227 | - |
161
+ | 0.1519 | 5000 | 0.015 | 0.0831 |
162
+ | 0.3038 | 10000 | 0.0146 | 0.0924 |
163
+ | 0.4557 | 15000 | 0.0197 | 0.0827 |
164
+ | 0.6076 | 20000 | 0.0031 | 0.0883 |
165
+ | 0.7595 | 25000 | 0.0439 | 0.0865 |
166
+ | 0.9114 | 30000 | 0.0029 | 0.0914 |
167
+
168
+ ### Environmental Impact
169
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
170
+ - **Carbon Emitted**: 0.268 kg of CO2
171
+ - **Hours Used**: 2.03 hours
172
+
173
+ ### Training Hardware
174
+ - **On Cloud**: No
175
+ - **GPU Model**: 1 x Tesla V100-SXM2-16GB
176
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.20GHz
177
+ - **RAM Size**: 12.67 GB
178
+
179
+ ### Framework Versions
180
+ - Python: 3.10.12
181
+ - SetFit: 1.0.3
182
+ - Sentence Transformers: 2.3.1
183
+ - Transformers: 4.35.2
184
+ - PyTorch: 2.1.0+cu121
185
+ - Datasets: 2.17.0
186
+ - Tokenizers: 0.15.2
187
+
188
+ ## Citation
189
+
190
+ ### BibTeX
191
+ ```bibtex
192
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
193
+ doi = {10.48550/ARXIV.2209.11055},
194
+ url = {https://arxiv.org/abs/2209.11055},
195
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
196
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
197
+ title = {Efficient Few-Shot Learning Without Prompts},
198
+ publisher = {arXiv},
199
+ year = {2022},
200
+ copyright = {Creative Commons Attribution 4.0 International}
201
+ }
202
+ ```
203
+
204
+ <!--
205
+ ## Glossary
206
+
207
+ *Clearly define terms in order to be accessible across audiences.*
208
+ -->
209
+
210
+ <!--
211
+ ## Model Card Authors
212
+
213
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
214
+ -->
215
+
216
+ <!--
217
+ ## Model Card Contact
218
+
219
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
220
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.35.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": true,
3
+ "labels": [
4
+ "GHGLabel",
5
+ "NetzeroLabel",
6
+ "NonGHGLabel"
7
+ ]
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a471343df3045f10e592c2ab4acde1b7a94710eb246bd36f3a7ec722ea2e11f4
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5818d39dd0b125cf38b0ba4d989524e1853f3f13f7fc23a053b799fdf6708d2c
3
+ size 10778
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff