GIZ
/

ppsingh commited on
Commit
39ae53b
1 Parent(s): e179893

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -5
README.md CHANGED
@@ -6,6 +6,20 @@ tags:
6
  model-index:
7
  - name: CONDITIONAL-multilabel-bge
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,7 +27,7 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # CONDITIONAL-multilabel-bge
15
 
16
- This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.5295
19
  - Precision-micro: 0.5138
@@ -28,15 +42,31 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
 
 
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Training procedure
42
 
@@ -63,10 +93,28 @@ The following hyperparameters were used during training:
63
  | 0.0298 | 5.0 | 1845 | 0.4971 | 0.5161 | 0.1840 | 0.5184 | 0.7317 | 0.1857 | 0.7317 | 0.6053 | 0.1829 | 0.6058 |
64
  | 0.0152 | 6.0 | 2214 | 0.5295 | 0.5138 | 0.1866 | 0.5169 | 0.7378 | 0.1874 | 0.7378 | 0.6058 | 0.1852 | 0.6065 |
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ### Framework versions
68
 
69
  - Transformers 4.38.1
70
  - Pytorch 2.1.0+cu121
71
  - Datasets 2.18.0
72
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: CONDITIONAL-multilabel-bge
8
  results: []
9
+ datasets:
10
+ - GIZ/policy_classification
11
+ library_name: transformers
12
+ pipeline_tag: text-classification
13
+
14
+ co2_eq_emissions:
15
+ emissions: 28.4522411264774
16
+ source: codecarbon
17
+ training_type: fine-tuning
18
+ on_cloud: true
19
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
20
+ ram_total_size: 12.6747894287109
21
+ hours_used: 0.702
22
+ hardware_used: 1 x Tesla T4
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
27
 
28
  # CONDITIONAL-multilabel-bge
29
 
30
+ This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
31
  It achieves the following results on the evaluation set:
32
  - Loss: 0.5295
33
  - Precision-micro: 0.5138
 
42
 
43
  ## Model description
44
 
45
+ The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels -
46
+ ConditionalLabel, UnconditionalLabel - that are relevant to a particular task or application
47
+ - **Conditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made conditionally.
48
+ - **Unconditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made unconditionally.
49
 
50
  ## Intended uses & limitations
51
 
52
+ The dataset sometimes does not include the sub-heading/heading which indicates that the paragraph belongs to Conditional/Unconditional category.
53
+ But has been copied from the relevant document from those sub-headings. This makes the assessment of Conditonality very difficult. Annotator when given only the paragraph without
54
+ the full long context had a difficulty in assessing the conditionality of commitments being made in paragraph.
55
 
56
  ## Training and evaluation data
57
 
58
+ - Training Dataset: 5901
59
+ | Class | Positive Count of Class|
60
+ |:-------------|:--------|
61
+ | ConditionalLabel | 1986 |
62
+ | UnconditionalLabel | 1312 |
63
+
64
+
65
+ - Validation Dataset: 1190
66
+ | Class | Positive Count of Class|
67
+ |:-------------|:--------|
68
+ | ConditionalLabel | 192 |
69
+ | UnconditionalLabel | 136 |
70
 
71
  ## Training procedure
72
 
 
93
  | 0.0298 | 5.0 | 1845 | 0.4971 | 0.5161 | 0.1840 | 0.5184 | 0.7317 | 0.1857 | 0.7317 | 0.6053 | 0.1829 | 0.6058 |
94
  | 0.0152 | 6.0 | 2214 | 0.5295 | 0.5138 | 0.1866 | 0.5169 | 0.7378 | 0.1874 | 0.7378 | 0.6058 | 0.1852 | 0.6065 |
95
 
96
+ |label | precision |recall |f1-score| support|
97
+ |:-------------:|:---------:|:-----:|:------:|:------:|
98
+ |ConditionalLabel |0.490 |0.760 |0.595 | 192.0 |
99
+ |UnconditionalLabel |0.555 |0.706 | 0.621 | 136.0 |
100
+ |
101
+
102
+ ### Environmental Impact
103
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
104
+ - **Carbon Emitted**: 0.02845 kg of CO2
105
+ - **Hours Used**: 0.702 hours
106
+
107
+ ### Training Hardware
108
+ - **On Cloud**: yes
109
+ - **GPU Model**: 1 x Tesla T4
110
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
111
+ - **RAM Size**: 12.67 GB
112
+
113
+
114
 
115
  ### Framework versions
116
 
117
  - Transformers 4.38.1
118
  - Pytorch 2.1.0+cu121
119
  - Datasets 2.18.0
120
+ - Tokenizers 0.15.2