--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: modelsent_test results: [] --- # modelsent_test This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2310 - Accuracy: 0.9279 - F1: 0.9279 - Precision: 0.9280 - Recall: 0.9279 - Accuracy Label Negative: 0.9192 - Accuracy Label Positive: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------:|:-----------------------:| | 0.5427 | 0.2442 | 100 | 0.5228 | 0.7544 | 0.7539 | 0.7602 | 0.7544 | 0.8157 | 0.6970 | | 0.2745 | 0.4884 | 200 | 0.2897 | 0.8937 | 0.8937 | 0.8940 | 0.8937 | 0.9028 | 0.8852 | | 0.2409 | 0.7326 | 300 | 0.3172 | 0.8992 | 0.8985 | 0.9069 | 0.8992 | 0.8232 | 0.9704 | | 0.2717 | 0.9768 | 400 | 0.2341 | 0.9163 | 0.9163 | 0.9169 | 0.9163 | 0.9306 | 0.9030 | | 0.2178 | 1.2210 | 500 | 0.2670 | 0.9169 | 0.9169 | 0.9171 | 0.9169 | 0.9230 | 0.9112 | | 0.2011 | 1.4652 | 600 | 0.2634 | 0.9145 | 0.9143 | 0.9158 | 0.9145 | 0.8813 | 0.9456 | | 0.2179 | 1.7094 | 700 | 0.2657 | 0.9016 | 0.9015 | 0.9027 | 0.9016 | 0.8699 | 0.9314 | | 0.1465 | 1.9536 | 800 | 0.2150 | 0.9212 | 0.9210 | 0.9228 | 0.9212 | 0.8851 | 0.9550 | | 0.1602 | 2.1978 | 900 | 0.2421 | 0.9261 | 0.9261 | 0.9264 | 0.9261 | 0.9356 | 0.9172 | | 0.1293 | 2.4420 | 1000 | 0.2693 | 0.9181 | 0.9181 | 0.9204 | 0.9181 | 0.9520 | 0.8864 | | 0.1023 | 2.6862 | 1100 | 0.2392 | 0.9236 | 0.9237 | 0.9240 | 0.9236 | 0.9343 | 0.9136 | | 0.1663 | 2.9304 | 1200 | 0.2326 | 0.9267 | 0.9267 | 0.9269 | 0.9267 | 0.9116 | 0.9408 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1